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ABSTRACT
Search engines play a crucial role in organizing and deliv-
ering information to billions of users worldwide. However,
these systems often reflect and amplify existing societal
biases and stereotypes through their search results and rank-
ings. This concern has prompted researchers to investigate
methods for measuring and reducing algorithmic bias, with
the goal of developing more equitable search systems. This
monograph presents a comprehensive taxonomy of fairness
in search systems and surveys the current research land-
scape. We systematically examine how bias manifests across
key search components, including query interpretation and
processing, document representation and indexing, result
ranking algorithms, and system evaluation metrics. By criti-
cally analyzing the existing literature, we identify persistent
challenges and promising research directions in the pursuit
of fairer search systems. Our aim is to provide a foundation
for future work in this rapidly evolving field while highlight-
ing opportunities to create more inclusive and equitable
information retrieval technologies.
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1
Introduction

Equals should be treated
equally and unequals
unequally.

Aristotle, 384–322 BC

Search systems are ubiquitous across a wide array of platforms, from
online information sources such as web search engines, e-commerce sites,
and social media to sociotechnical systems encompassing admissions,
housing, and employment platforms. They significantly influence the
flow of information and transactions, dictating the content that gets
consumed, the products purchased, employment decisions, and admis-
sions processes. The impact of these systems extends to both sides of
the spectrum: they serve not only consumers, such as web users, em-
ployers, purchasers, and admissions officials, who rely on them to make
informed choices but also providers, such as content creators, sellers,
job applicants, and media organizations, whose visibility and success
are directly affected by how they are ranked and presented within these
systems. This dual influence underscores the substantial role that search
systems play in access to information, shaping economic opportunities,
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264 Introduction

and social mobility. In recent years, there has been a growing focus
within the Information Retrieval (IR) community on the fairness of
search systems. This concern centers around whether the resources and
benefits provided by these systems are equitably distributed among the
various individuals or entities they impact. There is also a scrutiny of
whether these systems perpetuate or introduce harms, especially those
that are distributed in ways that are considered unfair or unjust.

Reflecting on the evolutionary trajectory of retrieval models over the
past few decades reveals a significant shift towards data and machine
learning driven methodologies. Initially, IR systems relied primarily
on ranking algorithms that utilized various heuristics, such as TF-
IDF weighting, to determine the relevance between a query and a
document. The idea of aggregating multiple signals into the ranking
process without resorting to heuristic methods led to the learning-to-
rank techniques in the 2000s (Liu et al., 2009), which involved defining
hand-crafted features that capture different notions of what constitutes
a relevant match, with machine learning models then tasked with
learning the optimal combination of these features from training data.
Recent neural IR models further eliminated the need for manual feature
design (Mitra and Craswell, 2017). The rise of large language models
(LLMs) is expected to dramatically transform the field of IR through
their remarkable capabilities in language understanding, generation,
generalization, and reasoning (Zhu et al., 2023). These models bring a
new level of sophistication to responding to complex queries. With the
evolution of search engines into predominantly data-driven AI systems,
they are increasingly susceptible to data and algorithmic biases. These
biases can significantly impact the fairness of search results, potentially
disadvantaging certain groups of consumers or providers, or reinforcing
stereotypes.

In this monograph, we provide an introduction to fairness in search
systems, with the aim of offering a starting point for understanding
the problem space, reviewing the body of existing research, and laying
the groundwork for further exploration and study in this critical area.
Our focus is primarily on the fairness of a search system in delivering
results that meet a user’s information needs as encoded in their queries.
We address fairness-related biases and harms, rather than the wider
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spectrum of issues that search systems might encounter, such as the
propagation of misinformation.

1.1 History of Fairness in Search

The history of fairness research in search has evolved over several
decades, reflecting a growing understanding of how these factors impact
the user experience and the ethical implications of IR systems.

In the early years of IR, dating back to the 1960s and 1970s, the
primary goal was to provide users with a list of documents that contained
the queried keywords. Early IR systems did not incorporate sophisticated
algorithms for ranking these documents, and as a result, search results
often lacked the depth and relevance of modern search engines. However,
interestingly, unfair rankings were discussed by Cooper and Robertson
in the probability ranking principle work (Robertson, 1977), even though
they did not use the term “fairness” as such (Hiemstra, 2023). It was
revealed that unfair rankings may arise from blindly applying the
principle without checking whether its preconditions are met.

The 1990s saw a significant expansion in search with the advent of the
Internet. The focus started shifting towards improving search algorithms
for better relevance and precision. Google’s PageRank algorithm (Page
et al., 1998) revolutionized search technology, which considered not
only keywords but also the quality and relevance of web pages. As
the commercial interests grew, search advertising became prominent.
Advertisers could pay to have their content displayed when specific
keywords were searched. This practice had the potential to introduce
bias in search results, as the presence and ranking of content became
influenced by commercial interests rather than purely by relevance and
quality.

During this era, the aspects of diversity and novelty in search results
began to gain attention, particularly in the context of providing a broad
range of search results to users (Clarke et al., 2008). As search engines
became integral to daily life, concerns regarding bias in search results
also began to surface. Algorithmic bias became a topic of discussion,
especially as it related to the ranking of websites. Critics have argued
that search engine algorithms sometimes favor authoritative sources
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while marginalizing smaller or less mainstream voices in search results, in
effect leading to concerns about information monopolies (Segev, 2010).

Discussions about net neutrality in the late 2000s and early 2010s
also brought search engine neutrality into the spotlight, as part of
the broader debate about equal access to online information (Crane,
2011). Search engine neutrality refers to the idea that search engines
should have no inherent biases in their algorithms and should treat all
web pages and content sources equally without favoritism. The central
question was whether search engines should serve as neutral platforms
that provided unfiltered and uncurated search results. The discussions
about neutrality raised complex questions about the role of search
engines as information gatekeepers and the potential consequences of
curating content. Search engine providers faced increased scrutiny from
regulatory bodies. They were challenged on practices such as favoring
their own services in search results, penalizing competitor websites,
and lack of transparency in their ranking algorithms. Legal battles and
antitrust investigations became more common, as seen in the European
Commission Guidelines on Ranking Transparency (Commission, 2020),
as governments sought to ensure that search engines operated fairly
and did not abuse their market dominance.

In the realm of IR research, numerous early studies have shed light
on various forms of unfairness in search results. These encompass a range
of biases, including racial, gender, and political viewpoint biases, which
have raised concerns about the perpetuation of stereotypes through
biased search outcomes. This area of inquiry is part of the broader
research landscape focusing on fairness in sociotechnical and AI systems
(Mitchell et al., 2021), yet IR systems present their unique challenges
and opportunities (Ekstrand et al., 2022). Early work (Friedman and
Nissenbaum, 1996; Introna and Nissenbaum, 2000) recognized the inher-
ent capacity of search engines to incorporate social, political, and moral
values into their ranking algorithms. To quantify the impact of such
embedded values, Mowshowitz and Kawaguchi (2002) proposed a metric
for measuring a search engine’s deviation from an ideal exposure of
content. Beyond the study of bias in algorithmic ranking, Vaughan and
Thelwall (2004) and Vaughan and Zhang (2007) discovered that biases
can arise from skewed crawling and indexing processes. Furthermore,
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the concept of document retrievability (Azzopardi and Vinay, 2008)
investigated the distribution skew in document retrievability across var-
ious retrieval systems, contributing valuable insights into the mechanics
of search engine fairness.

In the 2020s, calls for ensuring fairness in search engine algorithms
have intensified. Many raised concerns about the biases of AI and ma-
chine learning algorithms used in search engines (Baeza-Yates, 2018;
Gao and Shah, 2020). The need to make these algorithms more equitable
gained prominence. Ethical considerations became essential to the devel-
opment and deployment of search engine algorithms. The relationship
between the relevance of search algorithm results (and consequently,
the revenue of the search engine) and the fairness of those results is not
inherently contradictory. It has been shown that there are instances
where enhancing the quality of the results, quantified by metrics such
as Reciprocal Rank (RR), Average Precision (AP), or Normalized Cu-
mulative Discounted Gain (nDCG), can also simultaneously improve
the fairness of the outcomes (Hiemstra, 2023).

Fairness in search engines remains a dynamic and evolving field. In
recent years, there has been a generally increasing number of publications
on fair search as shown in Figure 1.1. The scope of this survey covers
more than 400 papers including the representative papers about fairness
studies in AI and the papers about fairness in search published in the
top IR related conferences and journals such as SIGIR, CIKM, WSDM,
WWW, KDD, ICTIR, ECIR, RecSys, FAccT, FnTIR, TOIS, ACL,
EMNLP, NAACL, AAAI, IJCAI, NeurIPS, ICML, as well as some of
the outstanding arXiv papers.

1.2 Fairness, Bias, and Diversity

While fairness, bias, and diversity are frequently discussed as interrelated
concepts in the research community, their relationships remain complex
and often misunderstood. According to the Cambridge Dictionary,1
bias represents a disproportionate inclination for or against certain
ideas or things, whereas fairness describes the equitable and reasonable

1https://dictionary.cambridge.org

https://dictionary.cambridge.org
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Figure 1.1: Publication trends in fairness in search (2014-2024). The data for 2024
is shaded to indicate that it represents an incomplete year at the time of this analysis.

treatment of individuals. This distinction is important: bias describes an
observable characteristic of a system without making value judgments,
while fairness addresses the ethical implications and societal impacts of
system behavior (Ekstrand et al., 2022).

Generally, different types of biases are key contributors to unfair
outcomes in AI systems. The linkage between specific biases and resul-
tant unfairness can be intricate (Li et al., 2023). For instance, unfairness
related to race and ethnicity might stem from biases in training data,
model design, optimization algorithms, or evaluation benchmarks. Fur-
thermore, a single type of bias, such as that in training data, can lead
to various forms of unfairness such as individual and group unfairness.

On the other hand, the presence of bias does not inevitably lead
to unfairness. For example, when a user searches for restaurants, a
search engine shows results biased towards local establishments. This
localization bias is based on the user’s geographic location, which
aligns with the user’s likely intent. Beyond data and algorithmic biases,
other factors can contribute to unfairness. It has been shown that
certain fairness requirements are inherently conflicting, suggesting that
upholding one type of fairness could inadvertently violate another
(Kleinberg et al., 2016).
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Recent research in search systems has delved into various biases
and debiasing methods (Zehlike et al., 2022; Ekstrand et al., 2022),
but a clear distinction between research on bias and that on unfairness
often remains elusive. Primarily, debiasing research tends to concentrate
on enhancing retrieval performance, rather than explicitly promoting
fairness. They usually conduct experiments based on improvements
in relevance of results alone, using these gains to demonstrate the
effectiveness of debiasing. In contrast, studies on fairness typically
offer clear definitions and quantitative metrics for evaluating model
unfairness, such as using performance disparities across groups to assess
group-level unfairness. Fairness-focused research often assesses methods
against both fairness metrics and traditional retrieval metrics.

While biases are recognized as key contributors to unfairness and
debiasing methods can potentially improve fairness, many fairness
studies do not rely on debiasing but instead directly incorporate fairness
requirements into model design. This approach, like imposing fairness
regularization during optimization, can sometimes compromise model
accuracy. Hence, there is a discernible research gap between debiasing
and fairness, despite their theoretical and practical interconnections (Li
et al., 2023). A more nuanced understanding of the relationship between
bias, unfairness, and the interplay of debiasing and fairness enhancement
methods could lead to more effective strategies that improve both
fairness and accuracy in search systems.

Diversity in IR is about ensuring a wide range of information in
search results. This means that the results should include a variety of
sources, viewpoints, or content types, rather than being dominated by
a few sources or perspectives. In many cases, efforts to improve fairness
in IR systems also enhance diversity. For example, algorithms designed
to reduce bias in search results often lead to a more diverse set of
search results. On the other hand, there can be tensions between these
two goals. For example, maximizing diversity in search results might
sometimes lead to less fair outcomes for certain groups, or vice versa.
In the literature, the notion of coverage-based diversity (Drosou et al.,
2017) is most closely related to fairness, which requires that members of
multiple, possibly overlapping, groups, be sufficiently well-represented
among the top-k, treated either as a set or as a ranked list. Both fairness
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and diversity should consider the user perspective. An IR system might
be fair and diverse from a content perspective but still fail to meet the
diverse needs and fairness expectations of different user groups.

Fairness is frequently encapsulated within the broader framework
of FACTS-IR that stands for Fairness, Accountability, Confidentiality,
Transparency, and Safety in Information Retrieval that also contains the
other pivotal aspects of responsible IR. The report from the FACTS-IR
Workshop (Olteanu et al., 2021) delves into the interplay and significance
of these concepts. In this survey, our primary focus is on fairness,
although we will also touch upon the other aspects, particularly in
contexts where they intersect with or influence fairness.

1.3 Biases in Search

The search process can be conceptualized as a feedback loop encom-
passing various stages, such as query formulation and understanding,
document representation, retrieval (or candidate generation), ranking,
user feedback, and evaluation. At each of these stages, biases may arise,
and the cyclic nature of the feedback loop has the potential to sustain
or even intensify these biases. While this survey primarily focuses on
fairness, it is important to recognize that various types of biases are sig-
nificant contributors to unfair outcomes in search systems. A thorough
understanding of how these biases interplay is essential for delivering
fair and accurate information to users. In this section, we outline the
architecture of a typical search engine, highlighting potential biases at
each stage as depicted in Figure 1.2. While this list of biases is not
exhaustive, it aims to provide an initial understanding of how biases
can manifest throughout the search process. More detailed discussions
on biases and unfairness, their implications, and mitigation strategies
are provided in the subsequent sections.

Given data sources, crawling and indexing are the foundational
processes in search engines that determine what content becomes search-
able. Crawling is the first step where crawlers, also known as spiders,
systematically browse the web to collect data from accessible web pages.
Due to the extensive nature of the web, crawling bias may occur when
these crawlers favor certain pages over others based on factors such as
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Figure 1.2: An overview of biases that can emerge at various stages in the life cycle
of a search system. Section x in the figure refers to the specific section where the
corresponding fairness issues are discussed.

page popularity or the quality and quantity of incoming links. This pri-
oritization can result in the underrepresentation of less popular or newly
established websites. Additionally, indexing bias can arise during the
organization and storage of data, where a search engine might prioritize
certain content, potentially distorting representation based on aspects
like language, popularity, or perceived relevance. This can dispropor-
tionately represent cultural and linguistic content. Moreover, technical
constraints and operational guidelines, such as the use of robots.txt files
to guide crawler activities, can inadvertently introduce biases.

Query formulation and understanding begin with the user
entering a query into the search engine. It involves a multi-faceted
analysis of user queries to interpret their intent, context, and meaning.
A cognitive bias is a systematic pattern of deviations in thinking which
may lead to errors in judgments and decision-making (Azzopardi, 2021).
Such biases may significantly influence how users formulate their queries.
For instance, confirmation bias stems from people’s tendency to prefer
confirmatory information, where they discount information that does
not conform to their existing beliefs. When querying, this may manifest
as people employing positive test strategies where they try to find
information that supports their hypotheses.
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Representation learning involves transforming documents or
queries into a format that can be efficiently processed by a search system.
During this stage, each document/query is analyzed and converted into
a structured form, often as a vector of features, which is then indexed
and stored in the search system’s database. This process also involves
pre-processing steps such as tokenization, removal of stop words, and
stemming or lemmatization. The goal is to distill the essence of each
document into a representation that captures its main themes and
content in a way that can be readily compared with user queries,
facilitating effective and efficient retrieval in response to search requests.

Representational bias may emerge in representation learning. This
bias can stem from a variety of factors related to the content, sources,
and historical context of the documents. It manifests as skewed or un-
balanced perspectives, representations, or information within the corpus
itself, which can lead to a misrepresentation of certain demographics,
viewpoints, or subject areas, affecting the fairness and accuracy of the
search process. Representational bias is not introduced by the retrieval
algorithms but rather originates from the intrinsic characteristics of
the corpus. Bias inherent in training corpora can not only persist but
also amplify (Papakyriakopoulos et al., 2020; Wang et al., 2024c) in
learned latent representations through deep neural networks, such as
pre-trained word embeddings (Brunet et al., 2019), BERT (Kurita et al.,
2019), and more recently in LLMs (Gallegos et al., 2023).

Retrieval is a process that retrieves all the candidates that match
the user query from the index. In general, the retrieval system has to
be fast and lightweight, as it considers the contents of the entire index.
Retrievability bias measures how easily a document can be retrieved
and exposed to the later ranking stage. A system with pronounced
retrievability bias disproportionately favors certain documents over
others (Azzopardi and Vinay, 2008), potentially resulting in unfair
outcomes in the search results (Otterbacher et al., 2017). Popularity
bias can also be manifested in retrieval, which is the tendency to retrieve
popular items more frequently than their intrinsic popularity justifies.
This bias stems from several contributing factors. The sheer volume and
visibility of content from popular sources can overshadow less popular
but relevant content in the retrieval process. Many search engines use
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link analysis algorithms such as PageRank to infer its importance or
relevance. Popular pages with many inbound links are more likely to be
retrieved due to their perceived authority. Some retrieval algorithms may
use historical user interaction data, like click-through rates as indicators
of relevance. Popular items that have been clicked on or interacted with
more frequently are likely to be considered more relevant, thus being
retrieved more often.

Ranking involves reordering the top results obtained from the
retrieval process. This can be based on chronological order, relevance
criteria, or a combination of both. Learning-to-rank techniques are often
employed at this stage to enhance the relevance of the results (Liu
et al., 2009). Beyond the popularity bias noted in the retrieval stage,
the ranking stage is also subject to biases introduced during retrieval.
Specifically, selection bias occurs when the initial set of documents
retrieved dictates the subsequent ranking order (Wang et al., 2023c). If
this initial retrieval is biased or narrow in scope, the range of documents
available for ranking becomes limited. As a result, the ranking stage is
constrained to working with this pre-selected set, potentially overlooking
more relevant or diverse documents that were not initially retrieved.

When ranked results are presented to the users, position bias occurs
when users engage more frequently with items at the top of a ranked list,
often irrespective of the actual relevance of these results. Eye-tracking
studies have shown that users typically focus on the initial items and
are less likely to consider those positioned lower (Joachims et al., 2007b).
Other research indicates that users often place undue trust in the top-
ranked results and may not evaluate subsequent items as thoroughly,
leading to a lack of holistic assessment of all available results (O’Brien
and Keane, 2006).

User feedback on ranked search results can be categorized into
two types: explicit and implicit. Explicit feedback is provided directly
by users in a clear and intentional manner such as ratings and surveys.
It represents a deliberate effort to convey relevance satisfaction with
the search results. Explicit feedback can also be done by third-party
human annotators by providing relevance judgment on query-document
pairs. Implicit feedback is gathered from user behavior and interactions
that are not directly intended as feedback but can be interpreted
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as such. It is unobtrusively collected as users go about their normal
activities. Examples include click-through rate (CTR), dwell time, scroll
depth, mouse movements, query reformulations, bounce rate, and so
on. Evaluation is required to continuously monitor the performance
of a search engine, as well as for measuring the effect of new changes
that are introduced to any of its components. Evaluation can be done
either manually, using explicit feedback, or automatically by tracking
the implicit feedback such as clicks and session metrics.

Conformity bias can skew user explicit feedback, as individuals often
align their behaviors with group norms, sometimes overriding their
personal judgment (Azzopardi, 2021). This can lead to feedback that
does not accurately represent their true opinions. Similarly, confirmation
bias occurs when users selectively favor or emphasize search results that
align with their pre-existing beliefs. This bias can result in feedback
that reflects personal preferences or beliefs rather than an impartial
assessment of the search results’ quality.

Unlike explicit feedback, implicit feedback only offers a limited in-
dication of user preference, as it lacks accurate information on what
users like or dislike. Exposure bias is a significant issue in this context,
arising from the fact that users only interact with a subset of docu-
ments. Consequently, not all unobserved interactions imply a negative
preference. This ambiguity stems from two potential reasons for an
unobserved interaction: either the document was not relevant to the
user, or the user was simply unaware of it. This makes it challenging to
accurately differentiate between genuinely negative interactions where
the user is exposed to but not interested in a document and potentially
positive ones where the user is not exposed to the document. As a
result, this inability to distinguish between different types of unobserved
interactions can lead to substantial biases in the learning process (Chen
et al., 2023b).

User feedback and evaluations are pivotal to update the parameters
of machine learning models in various components, including query
understanding, retrieval, and ranking, thus creating a feedback loop.
To enhance specific desirable properties, inductive biases can be inten-
tionally incorporated into the model design. Inductive biases are the
underlying assumptions that a model uses to better learn the target



1.4. Comparisons with Related Surveys 275

function and generalize beyond the training data. These biases are
often not harmful but essential, as the core of machine learning is the
ability to extrapolate predictions to new, unseen examples. Without
making certain assumptions about the data or model, generalization is
impossible, as the output for unseen examples could vary widely. The
development of an effective search system requires the incorporation of
specific assumptions about the nature of the target function to guide the
learning process. Moreover, some unfairness mitigation strategies, such
as the in-processing methods discussed in Section 5, leverage inductive
bias to correct for certain biases.

As shown in Figure 1.2, the search process forms a feedback loop
and biases emerge in different stages of the loop. These biases could
be further amplified over time along the loop. Take popularity bias
or position bias as an example. Initially, certain documents may be
ranked higher due to their popularity or early user engagement. These
documents then garner additional feedback, which influences future
rankings, potentially fostering a rich-get-richer dynamic (Joachims
et al., 2017c). This phenomenon raises important fairness questions
regarding how exposure should be distributed, ideally based on the
merit of the documents or items, rather than their initial popularity or
position (Biega et al., 2018; Singh and Joachims, 2018). For instance,
in a job applicant ranking system, such dynamics could exacerbate
existing unfairness, such as gender disparities. Similarly, in an online
marketplace, this bias could favor certain sellers (or groups), leading to
monopolistic tendencies and potentially driving other sellers out of the
market (Morik et al., 2020). Both scenarios highlight the important need
to address the biases and feedback loop to prevent the reinforcement of
existing disparities in search systems.

1.4 Comparisons with Related Surveys

In recent years, a number of surveys discussing fairness and bias in
general machine learning have been published (Caton and Haas, 2020;
Castelnovo et al., 2022). They usually focus on the fairness works in
classification tasks. A few surveys provide an overview of fairness in rec-
ommendation tasks (Wang et al., 2023b). Recommendation algorithms
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can usually be considered as a type of ranking algorithm, but they often
represent different characteristics. Pitoura et al. (2021) addresses fair-
ness in both ranking and recommendation, and Ekstrand et al. (2022)
discusses fairness in information access systems such as information
retrieval and recommendation. Chen et al. (2023b) provides a survey on
bias and debias in recommender systems, which covers a part of the con-
tent about fairness in recommendation. Similarly, Li et al. (2023) offers
a systematic survey of existing works on fairness in recommendation by
focusing on the foundations for fairness in recommendation literature.
Recently, Dai et al. (2024a) presents a survey on bias and unfairness
in IR systems that incorporate large language models predominantly
references studies from the recommendation systems domain. While
covering a brief introduction about fairness in classification and ranking,
our survey pays specific attention to organizing the concept of fairness in
search through a comprehensive taxonomy of fairness notions proposed
in search problems, the task-specific techniques for promoting ranking
fairness, as well as the datasets specially suitable for fairness research
in search.

Three surveys were focused on fairness in ranking and retrieval sys-
tems (Ekstrand et al., 2022; Zehlike et al., 2022; Patro et al., 2022). One
recent survey performed a systematic literature review of the field of
fairness, accountability, transparency, and ethics in information retrieval
(Bernard and Balog, 2023). Our survey distinguishes itself from existing
literature by offering several key advantages: 1) it provides a holistic
review of unfairness across the entire life cycle of a search process, in
contrast to previous surveys that primarily concentrate on fairness in
ranking; 2) it introduces a thorough taxonomy of fairness in search and
retrieval, aiding readers in comprehending various fairness considera-
tions within search systems and facilitating an organized framework
for navigating the literature in this domain; and 3) it is designed to
be accessible, enabling newcomers to the field to develop a systematic
understanding of the subject.

It is also worth noting that there have been several tutorials and
workshops related to investigating biases and fairness issues in IR
including the following: Addressing Bias and Fairness in Search Systems
at SIGIR 2021 (Gao and Shah, 2021), Fairness of Machine Learning in
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Recommender Systems at CIKM 2021 (Li et al., 2021b), Fair Graph
Mining at CIKM 2021 (Kang and Tong, 2021), Gender Fairness in
Information Retrieval Systems at SIGIR 2022 (Bigdeli et al., 2022),
Fairness of Machine Learning in Search Engines at CIKM 2022 (Fang
et al., 2022), Bias and Unfairness in Information Retrieval Systems:
New Challenges in the LLM Era at KDD 2024 (Dai et al., 2024a) and
WSDM 2025, and the workshop series on Algorithmic Bias in Search
and Recommendation (BIAS) at ECIR 2020-2023 (Boratto et al., 2023)
and SIGIR 2024 (Bellogin et al., 2024).

1.5 Intended Audience and Scope

This survey is beneficial for a wide array of individuals in the information
retrieval field, including: 1) newcomers seeking a comprehensive guide
to quickly delve into fairness issues in search systems; 2) those grappling
with various sources of bias and requiring a systematic study to grasp the
nuances of unfairness in search; 3) researchers aiming to stay up-to-date
with cutting-edge techniques for mitigating unfairness in search; and 4)
practitioners confronting unfairness challenges in the development of
search systems and searching for effective solutions.

Primarily written for the IR community, this monograph also caters
to diverse backgrounds such as machine learning, natural language
processing, and AI ethics. It serves as an accessible entry point to the
concept of fair search, enriched with numerous practical insights. We
envision this resource as valuable for students, researchers, and software
practitioners alike. Offering a holistic perspective and a thorough explo-
ration of key ideas, it is essential for understanding and constructing
modern search systems. These systems are crucial in enabling billions of
users to access a wealth of global knowledge and services while ensuring
fairness and equity in access.

1.6 Structure of the Survey

The monograph is structured as follows.

• Section 1 describes the architecture of a modern search system
with important components and highlights various biases that
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may arise in the search process. We also briefly review the history
of fairness in search.

• Section 2 provides background information about the bias in
algorithmic decision-making in general and in search in particular.
We review the existing work on bias mitigation in machine learning
and discuss the challenges in this space.

• Section 3 focuses on representation learning and content analysis,
and on how to learn an unbiased data representation.

• Section 4 investigates fairness in query understanding, specifically
in query formulation, query suggestion, and non-textual queries.

• Section 5 studies fair ranking and how to mitigate unfairness in
rankings.

• Section 6 discusses bias in relevance judgment (both explicit and
implicit) and how to learn and evaluate with biased feedback.

• Section 7 discusses emerging research directions, prompted by the
rise of large language models (LLMs) and the growing imperative
for responsible AI. This section also examines the open challenges
that define this evolving landscape.



2
Background and Foundation

As machine learning finds widespread applications in the world around
us, especially in areas such as healthcare, public policy, and law enforce-
ment, there is significant interest in understanding the societal impact of
these systems. Although it is a common belief that algorithmic decisions
(e.g., those based on statistical modeling and machine learning) can
counteract some existing biases and inconsistencies in human decision-
making, data-driven decision-making also affords new mechanisms to
introduce unintended bias (Barocas and Selbst, 2016). Some prominent
studies have brought fairness issues into the limelight. For example, in
2016, ProPublica published a study on COMPAS (Correctional Offender
Management Profiling for Alternative Sanctions) that was designed to
help human judges make bail decisions in the criminal justice system
(Angwin and Larson, 2016a; Angwin and Larson, 2016b). They found
that the false positive rate of the risk score model was significantly
higher for black defendants. Later, in 2018, Buolamwini and Gebru
(2018) showed that commercially available face recognition systems were
highly inaccurate for faces with darker skin tones, and this was also
representative of the diversity of the dataset, which consisted primarily
of lighter skin tone faces. These studies highlight several complex ideas
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of bias and fairness in data-driven decision-making systems, that we
will try to describe in this section.

In this section, we will lay a foundation for the work done on
the sources of unfairness in algorithmic decision-making systems (Sec-
tion 2.1), define notions of fairness for algorithmic decision-making
(Section 2.2), describe various ways in the literature to mitigate unfair-
ness with respect to these notions of fairness (Section 2.3), and discuss
the application of machine learning fairness to IR systems (Section 2.4).
In the rest of the monograph, we will rely on this foundation to extend
these notions of fairness to aspects of a search system.

2.1 Sources of Unfairness in Machine Learning Systems

Unfairness in machine learning models can arise at any stage of the model
development process from the data pre-processing stage to evaluation
and deployment. It can arise due to the biases already present in
society, such as historical discrimination like redlining that has long-
term effects on variables like wealth. Data collection processes can
introduce unfairness through sampling biases, response biases, how
variables are defined and measured, and what perspectives are captured
in the data. During the learning process, machine learning models
can also directly use sensitive attributes, or learn proxies for sensitive
attributes, introducing unfairness. The objective functions and the
models are also optimized for reflecting certain perspectives. Unfairness
can arise in model evaluation if the same issues around input data biases
also apply to evaluating that data. The choice of success metrics can
also prioritize some stakeholders over others. Human response to model
outputs is also a potential source of unfairness as humans may make
inaccurate assumptions about the model and the world. Moreover, it is
important to recognize that even if biases and unfairness are removed
from any stage, they can re-emerge at any stage, and if not handled,
they can also be propagated or reintroduced in the long term. Ideally,
each source of bias requires different interventions and measurements.
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2.1.1 Worldviews and Assumptions

Any attempt to design a fair decision-making mechanism has to make
assumptions about how the data is observed. Friedler et al. (2021)
proposed a framework to think about the underlying assumptions about
fairness and the treatment of bias, as illustrated in Figure 2.1. Specif-
ically, the authors discuss three key conceptual spaces: the construct
space (CS) that represents the true, unobservable characteristics and
qualifications of individuals, for example, an individual’s innate intel-
ligence or work ethic; the observation space (OS) that represents the
quantified features we can actually measure about individuals, such as
test scores or job performance ratings; and finally, the decision space
(DS) that represents the decisions made about individuals, such as their
rank in an ordering or rating. Although an OS serves as a proxy for the
CS to map individuals to the DS, it may actually be biased relative to
the CS, that is, it may not respect the ordering of individuals in the
CS.

Construct Space Observation Space

Group A

Group B

Group B

Group A

Figure 2.1: An illustration of the construct space and the observation space as
described by Friedler et al. (2021). In each space, individuals in two different groups
are represented. In this example, even if the two groups are closer in the construct
space, they might appear farther in the observation space used to make decisions.
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Given this framework of conceptual spaces for decision-making,
two extreme worldviews can be defined with respect to algorithmic
decision-making and, especially, machine learning-based decision-making
systems. What You See Is What You Get worldview, often referred to as
WYSIWYG, assumes that the OS (consisting of scores, qualifications,
etc.) accurately reflects the true properties of individuals. Any differences
seen between groups are taken at face value. Meanwhile, We’re All Equal
(WAE) worldview assumes that observed differences between groups
are solely the result of biased processes or observations. It assumes that
groups have equal distributions of qualifications and merit in the true
underlying construct space. The choice of worldview and mitigation
strategy depends on context and assumptions about the source of
unfairness. However, making these assumptions explicit is crucial for
selecting appropriate fairness evaluation methods and interventions.
This work also argues that clarity on the normative underpinnings of
fairness methods is currently lacking in much of the research, but is
essential for understanding the effects of chosen fairness evaluations and
mitigation strategies.

2.1.2 Harms: Distributional vs. Representational

Crawford (2017) described a framework of harms to describe the im-
pact of unfair machine learning methods on individuals and groups,
consisting of two categories: Distributional harms and representational
harms. While distributional or allocative harms refer to harms caused
by unfair distribution of resources or opportunities, representational
harm refers to harms caused by biased or unfair representation and
misrepresentation. For example, a group facing discrimination gets fewer
opportunities in education, employment, loans, etc. would be considered
distributional harm, a negative or stereotypical portrayal of a group
in search results, media, or films that shape public perception would
be considered representational harm. A study by Kay et al. (2015)
detected the presence of gender bias in image search results for a variety
of occupations, like doctor, nurse, teacher, etc. (e.g., Figure 2.2) and
conducted a user study to emphasize how a biased information environ-
ment may affect users’ perceptions and behaviors, by showing that such
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Figure 2.2: Example of representational harm: An image search result page for the
query “CEO” showing a disproportionate number of male CEOs.

biases indeed affect people’s belief about various occupations. Distribu-
tional harm occurs at both an individual and group level, and can be
measured by quantitative measures as well as remedied by focusing on
the fair allocation of resources and opportunities. On the other hand,
representational harm occurs only at a group level, is hard to evaluate
quantitatively, and may be remedied by ensuring fair, accurate, and
respectful portrayal which is often more challenging than remedying
distributional harm.

2.2 Defining Fairness Notions

There are two paradigms for defining notions of fairness in machine
learning. One considers fairness with respect to individuals (referred to
as Individual Fairness), and the other considers fairness with respect
to the groups that individuals belong to in terms of their sensitive
attributes (referred to as Group Fairness).

2.2.1 Individual and Group Fairness

The individual fairness perspective states that two individuals similar
with respect to a task should be classified similarly (Dwork et al., 2012).
Other examples include Counterfactual Fairness (Kusner et al., 2017;
Kilbertus et al., 2017), and Treatment Equality.

Group fairness definitions can be divided into three major categories:
Independence, Separation, and Sufficiency in terms of predictions Ŷ ,
true labels Y , and sensitive attributes A (Barocas et al., 2019). While the
notion of Independence between A and Ŷ implies constraints such as De-
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mographic Parity (Calders et al., 2009), Separation implies conditional
independence with respect to a sensitive attribute A, i.e., constraints
such as Equalized Odds and Equal Opportunity (Hardt et al., 2016).
Meanwhile, the notion of Sufficiency implies that the predictor is well
calibrated for all sensitive attributes (Pleiss et al., 2017). In short,
Independence ensures no correlation between sensitive attributes and
predictions, Separation requires equal error rates across groups, and
Sufficiency demands predictions be equally informative across groups
for fair outcomes in machine learning.

Independence: Demographic Parity. Demographic parity is an inde-
pendence-based notion of fairness that is satisfied if Ŷ is independent
of A, i.e., Ŷ ⊥ A. In other words, for two groups A = a and A = b:

P (Ŷ = 1|A = a) = P (Ŷ = 1|A = b).

Note that, in the definition above, the true labels Y are not in-
volved in the definition of the fairness metrics which means that the
constraint is not concerned with how accurate the model is, but only
that the prediction rates be the same for two groups. This has certain
shortcomings, for example, a perfect classifier (Ŷ = Y ) does not always
satisfy the constraint, for example, in the scenario when two groups
have different rates of Y = 1 ground truth labels. In other words, if
A and Y are correlated, a model that satisfies this constraint might
need to significantly sacrifice accuracy. However, it must be noted that
given a choice of labels Y , the prediction rates might be different for
different groups because they are genuinely different (e.g., due to group
preferences) or because the ground truth labels reflect certain historical
biases. This also relates these fairness constraints to the discussion
on Worldviews in Section 2.1. Several error-based notions of fairness
alleviate such concerns, as we will discuss next.

Separation: Error-based Fairness definitions. A classification model’s
predictions can be summarized into a confusion matrix when the true
labels are known (like in Table 2.1). Each cell of the confusion matrix
leads to a metric that is often used to measure the types of errors that
the model is making (like false positives) or getting right (like true
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Table 2.1: A confusion matrix is used to define different metrics based on the types
of errors made by a machine learning model. Equality among groups for each of
these metrics defines error-based notions of fairness.

Y=1 Y=0 P (Y = 1|Ŷ ) P (Y = 0|Ŷ )

Ŷ = 1 True Positive False Positive P (Y = 1|Ŷ = 1)
Positive Predictive value

P (Y = 0|Ŷ = 1)
False discovery rate

Ŷ = 0 False Negative True Negative P (Y = 1|Ŷ = 0)
False omission rate

P (Y = 1|Ŷ = 0)
Negative predictive value

P (Ŷ = 1|Y ) P (Ŷ = 1|Y = 1)
True positive rate

P (Ŷ = 1|Y = 0)
False positive rate

P (Ŷ = 0|Y ) P (Ŷ = 0|Y = 1)
False negative rate

P (Ŷ = 0|Y = 0)
True negative rate

P (Y = Ŷ )
Accuracy

positives). Equality among different groups on each of these metrics
leads to a definition of fairness. For example, Hardt et al. (2016) define
Equal Opportunity as the equality between true positive rates (P (Ŷ =
1|Y = 1, A = a) = P (Ŷ = 1|Y = 1, A = b)) which is also equivalent to
Ŷ ⊥A|Y = 1. Alongside, if the equality between false positive rates (or
true negative rates) is satisfied, the notion of fairness is called Equalized
Odds (Hardt et al., 2016) or Separation (Barocas et al., 2019).

Sufficiency: Calibration-based Fairness definitions. However, since
the predictions may not always be a binary variable, but a continuous
value like a probability between 0 and 1, several calibration based
notions of fairness can be defined. Such notions describe how likely an
individual with a prediction of Ŷ = p is to belong to the group Y = 1
or Y = 0. Gaps in how well a model is calibrated for different groups
can be used to define fairness. In risk assessment tools, like COMPAS,
one of the concerns raised is exactly how a high risk score for black
defendants is not the same as a high score for other defendants.

2.2.2 Causal Definitions of Fairness

Several other techniques formulate the measurement and mitigation
of disparities based on causal reasoning and intervention, rather than
merely statistical relationships (Kilbertus et al., 2017; Kusner et al.,
2017; Nabi and Shpitser, 2018). Using causal language (for example,
structural models of the world) can make value judgments more explicit
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and allow practitioners to designate different pathways through which
correlations or dependencies between sensitive attributes and predic-
tions/decisions may be acceptable or not. Overall, causal reasoning is a
great way to design interventions that reduce disparities and improve
overall outcomes.

2.3 Mitigating Unfairness in Machine Learning

Mitigation approaches to prevent unfairness in ML models can be
generally categorized into three categories: Pre-processing, In-processing,
and Post-processing (Caton and Haas, 2020). Each of these methods
targets different stages of the ML pipeline, as illustrated in Figure 2.3.

Pre-processing Post-processingIn-processing

Modify data before training Modify model that is trained Modify predictions of model

Figure 2.3: Mitigating unfairness at different stages of the machine learning pipeline.

Pre-processing methods stem from the understanding that biases in
training and evaluation data are a primary source of unfairness in ML
models. These biases can manifest in various forms, such as imbalanced
data distributions, noise in input features, and inaccuracies in labels,
particularly in relation to sensitive attributes. To mitigate this, the
strategy involves pre-processing the training data to reduce these biases
before the model training begins. The key idea is to train a model on a
repaired dataset so that the model can be inherently fair. Pre-processing
methods typically focus on modifying the sample distributions of pro-
tected variables or implementing specific data transformations with the
objective of mitigating discriminatory biases from the training dataset.

Pre-processing methods consider fairness as the first concern in the
ML pipeline. Their major advantage lies in their versatility: they are
not tied to any specific modeling technique used later in the ML process.
However, these methods can have unpredictable effects on the accuracy
of the model and may not fully address unfairness in the test data.
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Furthermore, there are scenarios where altering the training data is not
permissible due to technical constraints or legal considerations, limiting
the use of pre-processing methods in such cases.

In-processing methods are applied to the design and training of
models, which can induce intrinsically fair models. The majority of the
existing works of fairness in ML fall into this category. They often aim
to balance the accuracy and fairness demands by modifying the learning
process, e.g., incorporating fairness metrics into the objective function
of the main learning task.

One of the main strengths of in-processing methods is their ability to
offer more effective trade-offs between accuracy and fairness, as finding
this balance is central to their design. A notable drawback is that
such methods often lead to non-convex optimization problems, which
do not guarantee optimal solutions. Furthermore, altering the learning
process of a machine learning model may not always be feasible. Another
complexity with in-processing methods is the ambiguity surrounding
the underlying worldview of fairness-aware models, given their dual
objective of balancing fairness with accuracy (Zehlike et al., 2022).

Post-processing methods are implemented by applying transforma-
tions to a model’s output in order to mitigate unfairness. Typically,
this involves modifying the model’s predictions to conform to specific
fairness constraints, as seen in works like Hardt et al. (2016) and Kallus
and Zhou (2019).

One of the main advantages of post-processing is its flexibility.
It requires only access to the model’s predictions and information
about sensitive attributes, without the need to modify the underlying
algorithms or machine learning models. This characteristic makes post-
processing particularly suitable for scenarios where the ML pipeline
operates as a black box and its internal workings are not fully accessible.
Additionally, many post-processing methods can ensure a certain level
of representation or visibility for protected groups. A general downside
of post-processing is the implication that achieving fairness necessitates
a compromise in accuracy. This is because it relies on adjusting the
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outputs of an already trained model. Consequently, post-processing
may inadvertently reinforce the notion that fairness and accuracy are
mutually exclusive in some contexts.

2.3.1 Challenges and Limitations in Mitigation

There are fundamental trade-offs when it comes to satisfying multiple
fairness criteria all at once, unless the classifier is perfect or the base
rate of the true labels is the same (Kleinberg, 2018; Chouldechova, 2017).
This means that the choice of what fairness criteria to satisfy must
be chosen with careful consideration and with respect to the problem
domain at hand.

2.4 Applying ML Fairness Definitions to IR

ML fairness notions, definitions, and mitigation methods discussed in
this section do not directly translate to information retrieval systems
such as search, primarily because search systems are often comprised of
multiple stages (as discussed in Section 1.3 and Figure 1.2) as compared
to prediction models that predict labels or scores for a given input. We
will study these different stages from the lens of fairness in subsequent
sections. Furthermore, the output of a search system is traditionally a
ranked list of documents (websites, images, products, etc.) making the
output space much richer than the predictions of classification models,
simply because the rank of a document is not independent of the other
documents in the candidate set. Based on this key difference, novel
notions of fairness need to be developed for rankings which we will
discuss in Section 5.



3
Representation Learning and Content Analysis

Representation learning (Bengio et al., 2013) has been long studied and
achieved great success in contemporary IR systems, especially since
the rapid development of deep neural networks, covering a series of
milestones, such as word/document embeddings (Le and Mikolov, 2014),
sequence-to-sequence learning with RNNs (Sutskever et al., 2014; Cho
et al., 2014), CNN-based methods (Kim, 2014; Severyn and Moschitti,
2015), and the recent transformer family (Vaswani et al., 2017; Devlin et
al., 2019). In this section, we will first discuss the bias in different learned
latent representations based on neural networks, particularly focusing
more on recent document/query embedding methods and large language
models. Then, we will elaborate on three mainstream representation
learning methods (i.e., word embeddings, pre-trained language models,
and multimodal embeddings) in the fair ranking context, each of which
introduces preliminary knowledge, its connection and applications in
ranking, and how they can help realize fairness. Finally, we discuss bias
in the retrieval pipeline and contents.

289
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3.1 Bias in Learned Latent Representations

This section investigates the bias rooted in learning representations
with deep neural networks for the ranking problem, including bias in
word embeddings (Papakyriakopoulos et al., 2020; Brunet et al., 2019),
pre-trained language models (Wang et al., 2022b; Rekabsaz and Schedl,
2020), and multimodal/crossmodal embeddings (Jain et al., 2021; Yu
et al., 2022).

3.1.1 Bias in Word Embeddings

Word embedding serves as a foundation for broad document ranking
problems, leading to a series of research to discuss its bias (Papakyri-
akopoulos et al., 2020; Brunet et al., 2019; Sesari et al., 2022) on fair
representations – whether the pre-trained embedding models would in-
herit and even exacerbate the stereotyped social biases stemming from
training text corpora, such as gender bias (Zhao et al., 2019a; Gonen
and Goldberg, 2019), racial bias (Sap et al., 2019), etc. One example
of biased training data is given by man is to computer programmer
as woman is to homemaker (Bolukbasi et al., 2016a), as illustrated
in Figure 3.1. Such biased data would impact a wide range of word
embedding methods, including non-contextual methods (e.g., word2vec,
GloVe, and fastText) and contextual methods, e.g., ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019), and GPT/GPT-2 (Radford and
Narasimhan, 2018; Radford et al., 2019), and inevitably be propagated
to ranking results against sensitive attributes. More discussions on fair
word embeddings could be referred to a recent empirical study (Sesari
et al., 2022) and an evaluation framework (Badilla et al., 2020).

3.1.2 Bias in Pre-trained Language Models

Owing to the rapid development of the transformer (Vaswani et al., 2017)
family and large-scale, multitask pre-training (Radford and Narasimhan,
2018; Devlin et al., 2019), large language models have become the
mainstream approach to obtaining document representations and have
shown impressive generalization ability to compute semantic similarities
between documents among different domains. However, pre-trained
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Figure 3.1: Illustration of gender stereotypes in word embeddings, adapted
from (Bolukbasi et al., 2016a).

language models may still capture the social bias (Silva et al., 2021; Vas-
simon Manela et al., 2021; Meade et al., 2022) from the imbalanced train-
ing corpus (against the protected attributes) and incorporate such social
stereotypes into their embedding representations, which thereby transfer
these intrinsic biases to various downstream tasks (Goldfarb-Tarrant et
al., 2021; Steed et al., 2022), including search, retrieval, and ranking. Sev-
eral recent research studies have been proposed to evaluate and mitigate
the bias existing in the pre-trained models (PTMs). For instance, Silva
et al. (2021) investigated gender and racial biases for pre-trained BERT
and its variants (e.g., DistilBERT (Sanh et al., 2019), ALBERT (Lan
et al., 2020), and RoBERTa (Liu et al., 2020)), GPT-2 (Radford et al.,
2019), and XLNet (Yang et al., 2019) with three validation metrics, in-
cluding word embedding associate test (WEAT) (Caliskan et al., 2017),
sequence likelihood, and pronoun ranking (Kurita et al., 2019; Vig et al.,
2020). Vassimon Manela et al. (2021) introduced gender stereotype and
gender skew as two metrics to quantify the bias among pre-trained
models through the WinoBias pronoun resolution task.

More recently, Meade et al. (2022) provided a comprehensive empir-
ical study over multiple debiasing methods and validation methods for
two representative PTMs – BERT and GPT-2. They adopted three in-
trinsic bias evaluation benchmarks, including 1) sentence encoder associ-
ation test (SEAT) (May et al., 2019) (an extension of WEAT to sentence
level), 2) StereoSet (Nadeem et al., 2021), and 3) Crowdsourced Stereo-
type Pairs (Nangia et al., 2020), and investigated a group of bias miti-
gation strategies, such as counterfactual data augmentation, dropout,
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self-debias, SentenceDebias, and iterative nullspace projection (INLP),
covering data augmentation (pre-processing), random/projection-based
model regularization (in-processing), and hand-craft prompt design
(post-processing). Empirically, they found self-debias (Schick et al., 2021)
performed best, and current debiasing techniques might over-emphasize
gender bias. It is worth noting that, while many bias mitigation methods
have been proposed for PTMs, how to alleviate language model biases
toward fair ranking results remains under-explored.

3.1.3 Bias in Multimodal Embeddings

Beyond text documents, multimodal contents (e.g., objects including
image, text, audio, etc.) and cross-modal (e.g., text-to-image/video
retrieval) ranking problems have also emerged following the power-
ful large multimodal models, such as CLIP (Radford et al., 2021),
Flamingo (Alayrac et al., 2022), GPT-4 (OpenAI, 2023), etc. Particu-
larly, how the social bias inherited in each modality would impact and
entangle with the other modalities remains an open research problem.
Ross et al. (2021) focused on measuring social biases in visually grounded
word embeddings given by visual BERT family, including ViLBERT (Lu
et al., 2019), VisualBERT (Li et al., 2019), LXMERT (Tan and Bansal,
2019), and VL-BERT (Su et al., 2020a). Lee et al. (2023) provided
a thorough research study for intrinsic and extrinsic bias evaluations
in visual-language modeling, where the intrinsic bias appears in vi-
sion/language embeddings and the extrinsic bias reflects in downstream
applications (e.g., image/text retrieval), and systematically discussed
the challenges in measuring and mitigating these biases.

3.2 A Revisit to Word Embeddings

Word embeddings (Le and Mikolov, 2014) play a key role in both
score-based and learning-based ranking algorithms and appear almost
everywhere in modern search systems. Before the emergence of large
language models, non-contextual embedding methods (e.g., word2vec,
GloVe, etc.) have been one of the mainstream approaches to describing
document content and capturing semantic similarity. In the previous
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section, we reviewed the potential bias that may exist in both contextual
and non-contextual word embeddings. Here, we will revisit the ranking
algorithms that apply pre-trained, fixed word embeddings to extract
document representations, instead of formulating an end-to-end ranking
problem through language models, which will be covered in the next
section.

Non-Contextual Word Embeddings naturally compute document
distances (Kusner et al., 2015) and thus have been broadly used in
information retrieval and ranking tasks (Ganguly et al., 2015; Nalisnick
et al., 2016; Roy et al., 2016; Diaz et al., 2016; Balaneshin-kordan and
Kotov, 2017; Mitra et al., 2021). For example, Nalisnick et al. (2016)
improved the ranking scores based on the cosine similarity between
query and documents captured by the word2vec model. For another
example, Ahmad et al. (2018) applied the GloVe word embeddings
to initialize their neural ranking models implemented by bidirectional
LSTMs. The research adopting “still” word embedding models may
also inherit their biased representations and could even amplify the
stereotypes, especially for neural ranking algorithms (Rekabsaz and
Schedl, 2020). However, as these pioneering works mainly treat word
embeddings as input, a series of word de-biased methods (Bolukbasi
et al., 2016b; Bolukbasi et al., 2016a; Sesari et al., 2022) could be directly
applied to mitigate the potential unfair ranking results.

Contextual Word Embeddings generally refer to the representations
given by the embedding layers in sentence-level language models, such as
ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019). Unlike lan-
guage model-based rankers, e.g., learning-to-rank with BERT (Nogueira
and Cho, 2019; Han et al., 2020), the contextual word embedding can be
directly used as a feature extractor to implement representation-based
rankers (Qiao et al., 2019; Zhan et al., 2020) without end-to-end fine-
tuning through a ranking loss. Notably, the pre-computed contextual
query/document embeddings also suffer from various forms of biases (Pe-
ters et al., 2018; Zhao et al., 2019a; Papakyriakopoulos et al., 2020;
Kurita et al., 2019) that exist in training corpora. One recent work on
leveraging pre-trained BERT embedding to improve ranking fairness
could be found in Chen and Fang (2023).
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3.3 Large Language Models

Large language models (LLMs), such as GPT (Radford and Narasimhan,
2018), BERT (Devlin et al., 2019), ALBERT (Lan et al., 2020), etc.,
have been widely used in search and recommendation systems (Zou
et al., 2021; Zou et al., 2022a). This section will investigate the bias
and fairness in LLMs for ranking problems and also discuss prompt
tuning (Lester et al., 2021; Gao et al., 2021a; Hu et al., 2022) in
LLM-based methods towards fair ranking results. Table 3.1 summarizes
language models for document representations in ranking.

Table 3.1: Summary of language models for document representations in ranking.

Methods Language model Rank model Social bias

Pre-trained Word Embedding
(Ganguly et al., 2015) word2vec score-based n/a(Nalisnick et al., 2016)
(Ahmad et al., 2018) GloVe neural ranker n/a
(Qiao et al., 2019) BERT score-based n/a
(Rekabsaz and Schedl, 2020) GloVe/BERT neural ranker gender bias

LLM-based Ranking (End-to-End)
(Nogueira and Cho, 2019)

BERT encoder-based n/a(Nogueira et al., 2019)
(Yates et al., 2021)
(Nogueira et al., 2020) T5 seq2seq n/a(Zhuang et al., 2023)
(Ma et al., 2023) BERT decoder-based n/a
(Sun et al., 2023) GPT-3.5/4 decoder-based n/a
(Ma et al., 2023) T5/UL2 decoder-based n/a

Fair Ranking
(Seyedsalehi et al., 2022) BERT∗ encoder-based gender bias
(Rekabsaz et al., 2021) AdvBERT encoder-based gender bias(Zerveas et al., 2022b)

Multimodal Embeddings
(Yao et al., 2023) CLIP score-based n/a(Yang et al., 2023a)
(Ma et al., 2022c) CLIP neural ranker n/a
(Cho et al., 2023) CLIP score-based gender/skin-tone
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3.3.1 Preliminary Knowledge: LLMs in Ranking

Applying pre-trained LLMs to ranking problems has drawn increasing
research attention in recent years (Sun et al., 2023; Pradeep et al.,
2023; Wang et al., 2024b). One typical way is to finetune the pre-trained
LLMs with different ranking loss functions, such as point-wise (Nogueira
et al., 2019; Nogueira et al., 2020), list-wise (Pradeep et al., 2023), and
classification-like loss (Xiong et al., 2021; Lu et al., 2021). While LLMs
significantly improve zero-shot ranking performance, the fairness of their
ranking behavior remains unclear, especially when it comes to various
training recipes and model architectures. For example, Wang et al.
(2024b) has empirically shown discrepant fair ranking performance
on different evaluations and multiple LLM architectures. Thus, to
thoroughly investigate LLMs on fair ranking, we briefly introduce a
simple taxonomy of language model architectures for ranking as follows.

• Encoder-based methods (Nogueira and Cho, 2019; Nogueira et al.,
2019; Yates et al., 2021) generally adopt the pre-trained BERT
and its variants for the ranking task. Yates et al. (2021) provided a
detailed tutorial to thoroughly discuss applying transformer-based
encoders in multi-stage re-ranking and dense retrieval techniques.

• Seq2Seq methods (Nogueira et al., 2020; Zhuang et al., 2023) fall
in a sequence-to-sequence structure, where the encoder captures
the given query and each candidate document, and the decoder
generates the relevance labels/ranking scores as tokens. For exam-
ple, Zhuang et al. (2023) developed a RankT5 model by finetuning
the pre-trained language model T5 (Raffel et al., 2020) with a
ranking loss.

• Decoder-based methods (Sun et al., 2023; Qin et al., 2023; Ma
et al., 2023; Dai et al., 2023) may directly utilize the zero-shot
learning capacity and generalization ability of recent LLMs (e.g.,
ChatGPT, GPT-4, LLaMA, etc.) to re-rank candidate documents
conditioning on a query through proper prompt design, such as
instructional permutation (Sun et al., 2023), list-wise ranking
prompt (Ma et al., 2023; Pradeep et al., 2023), and pairwise
ranking prompt (Qin et al., 2023).
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3.3.2 LLMs towards Fair Ranking

Adversarial Training and Regularization. Despite the fruitful LLMs-
based ranking algorithms, the impact of bias in pre-trained LLMs on
fair ranking needs to be explored more. Rekabsaz et al. (2021) in-
vestigated the social biases in diverse ranking models, especially for
BERT-rankers (Nogueira et al., 2019), and proposed an adversarial mit-
igation strategy, namely AdvBERT, to alleviate stereotypes in retrieved
results. The key design of AdvBERT is to leverage adversarial training
to jointly predict ranking relevance and remove protected attributes
from document representations. Followed by, Zerveas et al. (2022b) de-
veloped a novel list-wise regularization to penalize documents sensitive
to gender bias, applying to transformer-based ranking models (Zerveas
et al., 2022a).

Self-Supervised Learning. The self-supervised learning has been well
studied for mainstream language modeling in three directions, including
1) masked language modeling (MLM) (Devlin et al., 2019; Lan et al.,
2020), 2) generative modeling (Radford and Narasimhan, 2018; Brown
et al., 2020), and 3) contrastive learning (Oord et al., 2019; Reimers
and Gurevych, 2019; Fang and Xie, 2020), which have been also broadly
investigated and applied in ranking problems (Gu et al., 2021; Zhou
et al., 2021) with a particular focus on fairness. For example, Liu and
Zhao (2021) proposed a self-supervised rating distribution calibration
to mitigate the selection bias in recommender systems. For another
example, Gu et al. (2021) adopted self-supervised pre-training to better
capture user behaviors and alleviate the negative impact of biased user
implicit feedback. They first developed a task-agnostic pre-trained user
model based on contrastive predicting coding (Oord et al., 2019) and
further fine-tuned it in multi-scenario ranking problems. Owing to its
intrinsic interplay between data augmentation and generalization, the
self-supervised learning realm provides promising solutions to mitigate
data bias and address the data-starving challenge (e.g., the lack of
minority group data, feedback relevance, attribute labels, etc.) for fair
ranking.

Prompt Learning. A prompt is a commonly used way to instruct
LLMs for the ranking and search problems (Hu et al., 2022; Huang
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et al., 2023; Tam et al., 2023; Dai et al., 2023; Sun et al., 2023; Qin et al.,
2023; Ma et al., 2023), which could refer to discrete prompts – fixed,
pre-defined input templates that are manually designed or automatically
generated (Gao et al., 2021b), or continuous prompts – prompt tuning
that generally learns dynamic conditions adaptive to input data (Lester
et al., 2021). Despite the flourishing of LLM-based rankers (Dai et al.,
2023; Sun et al., 2023; Qin et al., 2023; Ma et al., 2023), it remains
unclear if the ranking/retrieved results given by LLMs exhibit social
biases. Empirically, Sun et al. (2023) reported concerns about the racial
bias, geographical bias, and gender bias that may appear in LLM-based
ranking. To mitigate the bias in ranking results given by pre-trained
LLMs, one possible and parameter-efficient way is to develop fairness-
aware prompt learning approaches. Gallegos et al. (2023) summarized
potential bias and fairness issues in LLMs and introduced several bias
mitigation strategies through prompting LLMs.

3.4 Large Multimodal Pre-training

Multimodal embedding methods, such as 1) jointly training plus cross-
modal retrieval (Radford et al., 2021; Li et al., 2022; Yu et al., 2022)
and 2) cross-attention (Zellers et al., 2021; Alayrac et al., 2022), play a
key role in recent search problems over multiple modalities. This section
will discuss the bias in multimodal embedding and investigate its impact
on fair ranking.

Cross-Modal Retrieval and Ranking. The recent large multimodal
pre-training methods have greatly advanced the cross-modal search
performance. Unlike the conventional deep multimodal learning meth-
ods (Hu et al., 2019), the pre-trained multimodal models usually enable
co-embedding representations to directly compute the similarity (rank-
ing scores) between query and documents, which has shown a promising
finetuned and even zero-shot retrieval results on diverse domains. To
be specific, Lu et al. (2019) developed a ViLBERT model by employing
cross-attention over visual and text tokens and applied the pre-trained
model for caption-based image retrieval. Peering to this work, a group of
visual BERT (Li et al., 2019) models have been built and mainly adopted
the task-agnostic pre-training plus task-specific finetuning strategy in
the downstream tasks, such as image-text retrieval.
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Models like CLIP (Radford et al., 2021) present significant progress
in this area as they exhibit impressive zero-shot multimodal learning
capacity to handle cross-modal retrieval. The pre-trained image/text
embeddings are well aligned upon contrastive learning and pre-trained
tasks, which could be further extended by enriched captions (Li et al.,
2022), out-of-distribution (OOD) web data (Sun et al., 2024a), and
video/text embeddings (Gorti et al., 2022). Following CLIP, Yao et al.
(2023) designed both learnable and template prompts to “fine tune”
CLIP to enrich the semantic context for a given image, facilitating
broad cross-modal retrieval tasks. Yang et al. (2023a) established a new
image/text retrieval dataset and provided comprehensive benchmark
results in terms of different CLIP model sizes. To enable co-embedding
on multimodal user data, Yu et al. (2022) collected a large cross-modal
dataset from online applications and optimized the visual/text encoders
(transformers) through several pre-training tasks, including masked
language modeling (MLM), masked image modeling (MIM), image-text
contrastive learning (ITC), and image-text matching (ITM). They also
provided a new cross-pair pre-training for better cross-modal retrieval
over diverse commercial data.

More recently, large vision-language models (LVLM) have also been
built based on the pre-trained CLIP embeddings, such as visual instruc-
tion tuning (Liu et al., 2023) and its variants (Zhang et al., 2024b; Cai
et al., 2024; Sun et al., 2024b), enabling a strong research potential in
handling cross-modal retrieval and ranking problems. A comprehensive
fairness evaluation framework has been presented in Wu et al. (2024c)
to assess both closed-source and open-source LVLMs in terms of social
bias and prompts.

Unbiased Multimodal Embeddings. Co-embedding features have en-
abled effective and efficient cross-modal search, raising the challenge
of learning unbiased embeddings to realize fair ranking across multiple
modalities. To this end, Yanagi et al. (2021) developed a database-
adaptive re-ranking framework to mitigate the bias of multimodal
databases, especially for text-to-image retrieval. Ma et al. (2022c)
adopted a causal treatment to debias the CLIP model for the E-
commerce cross-modal retrieval. Particularly, they learned confounding
entities from the given commercial domain to finetune the pre-trained
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CLIP to avoid biased semantics of special entities. On the other hand,
Cho et al. (2023) disclosed intrinsic social biases on gender, skin tone,
and attributes of the pre-trained multimodal embeddings through text-
to-image generation models (e.g., Dall·E) as illustrated in Figure 3.2,
which is highly relevant to designing fair ranking algorithms when adopt-
ing large multimodal models and generated data (Bithel and Bedathur,
2023). A detailed review of recent debias methods on visual-language
models could be referred to in Lee et al. (2023).

Figure 3.2: Illustration of gender and skin tone biases in vision-language modeling,
adapted from (Cho et al., 2023; Lee et al., 2023).

3.5 Retrieval Bias

As illustrated in the search pipeline in Figure 1.2, after documents or
items are represented and indexed, the retrieval stage ensues, yielding a
small set of candidates for subsequent ranking. An important aspect in
understanding retrieval bias is the concept of retrievability, as defined by
Azzopardi and Vinay (2008). This concept is fundamentally document-
centric in nature, making it a pertinent topic for discussion in this
section.

Retrievability estimates how easily a document can be retrieved by
a given retrieval system in response to any arbitrary query, independent
of relevance considerations. The bias imposed by the retrieval system
on document collections is determined by analyzing the distribution of
retrievability scores. Here, bias signifies the disparity in retrievability
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among documents within a collection. The degree to which a given
distribution deviates from equality is reflected by the skew in the distri-
bution. The more skewed the distribution, the greater the amount of
inequality, or bias within the population. Retrievability bias is influenced
by multiple factors including document representations, corpus statis-
tics, the indexing process, the retrieval model/system, its parameter
settings, and user interaction patterns (such as query types and the
number of documents users review).

The relationship between retrievability bias and performance has
been examined in various contexts including web (Azzopardi and Vinay,
2008), news (Wilkie and Azzopardi, 2013), patents (Bashir and Rauber,
2010), archives (Samar et al., 2018), and across numerous factors (in-
cluding query length, document length, document features (Wilkie and
Azzopardi, 2014a), query expansion (Bashir and Rauber, 2010), and
retrieval algorithms (Wilkie and Azzopardi, 2014b)). These studies have
sought to correlate retrievability bias with performance metrics. For
instance, Wilkie and Azzopardi (2014a) investigated how changes in
length normalization parameters affected system bias and its relation to
different performance measures. Additionally, Bashir and Rauber (2010)
discovered a strong correlation between bias and recall. Comparing
different algorithms, they hypothesized that fairer systems might lead
to enhanced performance and found that systems selected for lower
bias often corresponded to higher-performing systems. This correlation
highlights the importance of considering retrievability bias not just as a
fairness issue, but also in terms of its impact on the overall effectiveness
of retrieval systems. Penha et al. (2023) proposed a query generation
approach to tackle retrievability bias by promoting the generation of
new entities in the reformulated queries.

Furthermore, Otterbacher et al. (2017) utilized the concept of re-
trievability to explore the presence and intensity of gender stereotypes
in image searches. Their findings revealed a notable imbalance in retriev-
ability between genders. Specifically, in searches for “person” images,
photos depicting men were found to have significantly higher retriev-
ability compared to those of women. This disparity persisted even when
users were prepared to review a large set of images, with men more
frequently representing the generic concept of a “person.” In a similar
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vein, Makhortykh et al. (2021) applied the notion of retrievability to
investigate racial bias in search engines. Their study uncovered that
search engines prioritize anthropomorphic images of AI that portray it as
white, whereas non-white images of AI are present only in non-Western
search engines.



4
Fairness in Query Formulation and Understanding

Query formulation and understanding is a fundamental component
of search systems, where the aim is to accurately interpret the user’s
intent. This process involves several steps, including receiving the query,
parsing the query, identifying key terms and entities, understanding
the context, and sometimes even inferring information not explicitly
stated in the query. The goal is to bridge the gap between the user’s
input and the information available in a system (like web pages, prod-
ucts, or documents) to provide relevant results. Key modules in query
understanding include query representation and query suggestion.

Query formulation and understanding can be susceptible to various
biases and unfairness. This section delves into these issues and explores
strategies for their mitigation, particularly focusing on aspects like
query representation, suggestion, and reformulation, as well as handling
non-textual queries.

4.1 Query Formulation

Biases in query formulation stem from a user’s pre-existing beliefs,
assumptions, and preferences on their interaction with search engines,
which can influence how a search query is represented in information
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retrieval systems. When querying a search system, cognitive biases may
manifest as searches are framed in a way that is more likely to produce
results that confirm their beliefs (Azzopardi, 2021). Kopeinik et al.
(2023) analyzed search queries formulated by native English-speaking
users concerning the replication of gender stereotypes. Participants
were asked to formulate a search query, given a particular search result
(i.e., a heading and a preview of a document, as presented on the
main page of standard search engines). Their results showed significant
evidence for the prevalence of gender biases in search query formulation.
Table 4.1 shows examples of queries generated by participants for the
gendered variations. Raj et al. (2023) studied the situations where users
add gender-specifying terms in their query reformulation as a lens on
the relationship between system results and gender. They found that
these reformulations sometimes correct for and other times reinforce
gender representation on the original result page. Wang et al. (2021a)
reported on studies that explore the gendered nature of search queries,
as well as those that present query reformulation mechanisms that
attempt to revise an initial query in a way that will lead to a less biased
list of documents while maintaining (or possibly increasing) retrieval
effectiveness (Bigdeli et al., 2021a).

To mitigate the bias in query representation, Bigdeli et al. (2021a)
introduced a bias-aware approach by revising the initial query in a way
that would lead to a less biased ranked list of documents. The work
challenged the widely assumed trade-off between utility and bias by
showing that a less biased revised query can maintain utility and at
the same time reduce bias. The key idea was to leverage the pseudo-
relevance feedback from an initial retrieval to reformulate a query for
optimizing objectives beyond relevance, such as the fairness of the search
results. Jaenich et al. (2023) further extended the work by proposing
a fair feedback mechanism for multiple representation dense retrieval
named ColBERT-FairPRF, which enhances the distribution of exposure
over groups of documents in the search results by fairly extracting the
feedback embeddings that are added to the user’s query representation.
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Table 4.1: Examples of queries formulated by human participants given the content
of a document, adapted from (Kopeinik et al., 2023)

Domain: Career
Expected Stereotype: Towards Male
Title: What enables some men to become CEOs?
Body Text: The authors found that working with ...
Gender Indication: Male → Prototypical content
Participants’ generated queries:
Query Text Gender Mentioned?
how men get to the top Yes
becoming a CEO No
what makes a good CEO No
how to be a ceo No
Title: What enables some women to become CEOs?
Body Text: The authors found that working with ...
Gender Indication: Female → Counter-prototypical content
Participants’ generated queries:
Query Text Gender Mentioned?
how to be a female ceo Yes
women becoming CEOs Yes
skills needed to be a ceo No
female career success Yes

4.2 Query Suggestions

Query suggestion is a feature commonly used in search engines and
other information retrieval systems to assist users in formulating their
search queries more effectively. When a user begins typing a search
query, the system provides a list of possible completions or extensions
of the query based on various factors, which could influence the direc-
tion of subsequent search results. By impacting what users search for,
biased query suggestions can indirectly induce biased opinions. This
is especially problematic since it was shown that query suggestions
can be manipulated and could be used in malicious ways (Wang et al.,
2018). Query suggestions are often generated based on popular queries
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and historical data, which may contain inherent biases. For instance, if
stereotypical associations or discriminatory views are prevalent in the
data, the algorithm may propagate these biases by suggesting similar
terms to users. This not only limits the diversity of the content presented
but also reinforces existing societal stereotypes, as users may perceive
the suggested queries as endorsements of certain viewpoints. Figure 4.1
shows an example of a biased query suggestion from a major search
engine as of November 23, 2023.

Figure 4.1: Query suggestions provided by a major search engine for the query
women should, as of November 23, 2023.

To study when query suggestions are problematic, Olteanu et al.
(2020) conducted query log analysis from a large commercial search
engine, through a mixed-methods approach blending heuristics for query
data sampling and synthetic query suggestion generation with crowd
experiments. To further understand why suggestions are deemed prob-
lematic, they contrasted observed scenarios with a multi-dimensional
inventory of known categories of problematic suggestions. Stereotypes
and bias were among the six types of problematic suggestions they
investigated, which were defined as likely being “perceived as discrimi-
natory towards certain groups (including racist, sexist, homophobic),
or as endorsing certain ideological views.”
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Bonart et al. (2020) analyzed query suggestion features of three
search engines to see if these features introduce some bias into the query
and search process. Haak and Schaer (2021) investigated metrics that are
aware of perception in query suggestion bias detection. They argue that
simply treating query suggestion datasets as lists of unique suggestions
fails to consider how often and in what order suggestions are shown. To
address this, they use rank-aware and frequency-aware metrics, such
as Discounted Cumulative Gain (DCG) and Normalized Discounted
Cumulative Gain (nDCG), to analyze topical group bias in search query
suggestions for names of German politicians. They focus on attributes
such as gender, age, and party affiliation. The study finds evidence of
gender bias, noting that female politicians receive significantly lower
DCG and nDCG scores in political suggestions. Haak and Schaer (2022)
indicated a gender bias within two of the three topical clusters examined,
revealing that searches for female politicians returned more suggestions
with political or economics-related topics than those for male politicians.
This led to the conclusion that perceived bias in search query suggestions
for person-related searches is more dependent on the employed search
strategy than on the effects of biased meta-attributes such as gender
or age. Haak (2023) investigated the correlations and effects between
biases in search queries and search query suggestions, search results,
and users’ states of knowledge. Recently, Haak et al. (2024) applied
large language models to identify biased search queries. Specifically,
they discovered substantial biases in search query suggestions in the
U.S. political news domain. Pradel et al. (2024) showed that query
suggestions for male politicians are significantly more stable over time
than those for female politicians.

Ma et al. (2022a) and Ma et al. (2022b) investigated the task of
subgraph query generation, aiming to produce outputs that adhere
to both diversity and fairness constraints. They framed the problem
as a bi-criteria optimization, focusing on optimizing the diversity and
fairness properties of the queries. To tackle this, they proposed ap-
proximation algorithms, specifically designed for scenarios involving
equal opportunity and cardinality constraints on output sizes. Addition-
ally, they developed heuristics for more general cases. The experiments
showed that they achieved desirable diversity and fairness coverage over
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targeted groups. Mandal et al. (2021) studied geographical bias based
on the language and location of search engine queries. They showed that
this type of bias manifests in different forms, throughout the machine
learning pipeline, as racial, cultural, and stereotypical bias.

4.3 Beyond Text Retrieval

In this section, we will review the related work on bias and fairness
beyond text retrieval such as voice assistants, conversational search,
and image search.

An increasingly popular alternative in e-commerce search is to issue
a voice query to a smart speaker powered by a voice assistant. As only
one product is returned and added to the customer’s cart, this reduced
autonomy of the customer in the choice of a product during voice search
makes it necessary for a voice assistant to be far more fair in its action.
Dash et al. (2022) investigated the fairness of the default action of
Alexa and they observed that over a set of as many as 1000 queries,
in about 68% cases, there exist one or more products that are more
relevant (as per Amazon’s desktop search results) than the product
chosen by Alexa. Koenecke et al. (2020) studied five state-of-the-art voice
assistants (developed by Amazon, Apple, Google, IBM, and Microsoft)
and demonstrated that all five systems exhibited substantial racial
disparities. A separate empirical analysis of bias in voice-based personal
assistants (Lima et al., 2019) also showed interaction bias in users of
languages and accents from different geographic regions, particularly
those from developing countries. These studies suggest that the quality
of interaction via audio depends on many user factors such as language,
tone, and accents. Dambanemuya and Diakopoulos (2021) controlled
for these confounding influences by relying on a consistent acoustic
model provided by Amazon Polly speech synthesis and auditing the
information quality of news-related queries on the Alexa voice assistant.
Seymour et al. (2023) conducted a systematic literature review of 117
papers on ethical concerns with voice assistants.

The tone of voice or persona of the system interacting with exist-
ing stereotypes or biases of humans speaking in particular ways may
plausibly both reinforce existing biases as well as cause systems to be
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perceived in particular ways (Nag and Yalçın, 2020). Gerritse et al.
(2020) discussed different types of biases in conversational search sys-
tems, with an emphasis on the biases that are related to personalized
knowledge graphs. They reviewed existing definitions of bias in the
literature: people bias, algorithm bias, and a combination of the two,
and further proposed different strategies for tackling these biases for
conversational search systems. They also discussed methods for measur-
ing bias and evaluating user satisfaction. While there is existing work on
cognitive biases in text retrieval, the research on voice-based interfaces
is limited. Kiesel et al. (2021) gave a brief overview of prior findings
for cognitive biases in Conversational AI (both voice user interface and
chatbots) and divided them into two categories: one related to informa-
tion access and another about conversational systems. Ji et al. (2024)
aimed to detect and mitigate cognitive bias in spoken conversational
search. Cherumanal et al. (2024) further studied how the limitation
in voice-only channels can impact the presentation of complex queries
involving controversial topics with multiple perspectives, which may
lead to biased search results.

4.4 Search Query Datasets

Haak and Schaer (2023) presented two datasets: a biased news dataset
and a large dataset of biased and unbiased search queries for topics
of the U.S. political news domain. The GrepBiasIR dataset (Krieg et
al., 2022a) provided a set of bias-sensitive queries, namely the gender-
neutral queries for which biases in their retrieval results are considered
socially problematic. The queries cover seven gender dimensions on
topics such as physical capabilities and child care. Each query is also
accompanied by one relevant and one non-relevant document, where
each document is expressed in neutral, male, and female wording. Using
GrepBiasIR, Kopeinik et al. (2023) conducted a user study to observe
and measure the potential biases of the search engine’s users when
formulating queries on gender-sensitive topics. Table 4.2 summarizes a
list of public query datasets for studying biases in search.
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Table 4.2: The public query datasets for studying biases in search

Dataset Target Bias Domain # Queries Sample Query
GenderBias1 Gender Text 3,900 is a dragon gay

MS MARCOFair2 Gender Text 215 how do i figure my normal bmi
GrepBiasIR3 Gender Text 118 how to become ceo

Query Formulation4 Gender Text 118 weight lifting
Qbias5 News Text 671,669 Madeline Albright

Image Search6 Gender Image 30,000 a person is cooking



5
Fairness in Ranked Outputs

Rankings are the primary interface through which a search system
presents information to its users. In real-world ranking-based systems,
the ranking stage often consists of machine learning models trained using
learning-to-rank methods that are often followed by reranking modules
to enforce information diversity or business-level constraints. In the
preceding section, we delved into the topic of document representation,
content analysis, and retrieval within search systems – a prerequisite to
the ranking stage. The retrieval stage narrows down the set of candidates
to be considered for ranking from the size of the document corpus to
a few thousands or hundreds, so ranking methods have to focus on a
significantly smaller pool of candidates and can use additional context
and features to optimize for a more accurate ordering of the candidates.
While the retrieval stage optimizes for higher recall, the ranking stage
focuses on precisely ordering the candidates based on aspects such as
their utility to the user. In this section, we will also delve into the
concept of fairness in the ranking framework, investigating the varied
interpretations and definitions of fairness presented in the existing
literature.
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We have already looked at the foundational work on defining notions
of fairness in algorithmic decision-making and machine learning (in
Section 2), where the notions were primarily applicable to models that
classify or score input data. Even though most ranking methods rely on
ML models, the same notions do not apply in a straightforward manner
for several reasons:

• Non-independence between individual decisions. During
ranking, the decision for an individual item (i.e., where the item
is ranked) depends not only on the item’s own relevance to the
context but also on the relevance of other items being ranked. In
other words, by design, there is an inherent competition between
items to occupy higher positions. This added complexity on top
of other supervised learning techniques requires more expressive
forms of fairness notions.

• Repeated decisions. Most research in defining fairness for
decision-making systems assumes that decisions are made at a cer-
tain point in time and do not account for a sequence of decisions
over time. Ranking in search systems is an easy counterexample
of these point-in-time assumptions because of two reasons. First,
the system may continuously adapt using the feedback provided
by the user, and second, the system may make the same decisions
repeatedly over a period of time (e.g., serve different users with
search results to the same query). This departure from the stan-
dard classification setting requires a more expressive framework to
define fairness constraints, as well as provides an opportunity to
tackle the non-independent decision limitation described above.

• Aspects of personalization. Unlike classification models where
the decision is made concerning a single decision maker, for exam-
ple, the bank makes a decision whether to extend a loan or not,
and a judge decides whether bail is granted or not, the decision
of ranking a set of documents for the same query may need to be
personalized for the user (based on explicit or implicit preferences
known to the system) and the context (such as time of day, user’s
location). For example, a user living in Phoenix should receive a
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different set of results for the query “restaurants” as compared to
a user in Philadelphia, and the results may need to differ for a
user who has specified a filter for vegan places.

• Multiple stakeholders. These systems almost always contain
more than one stakeholder, so the decisions made need to also
consider the utility of stakeholders other than the users who are
the recipients of the ranking. For example, in a music streaming
platform, the other stakeholders might be the artists; in a job can-
didate search setup, we need to consider both the job candidates
and the recruiters as stakeholders. Different stakeholders derive
utility from the system in different ways, optimizing for utilities
and fairness for these multiple stakeholders requires a different
framework.

The differences stated above indicate that a naïve application of
fairness notions and mitigation strategies from ML fairness research for
classification models may not be effective in tackling fairness-related
problems in search systems. This realization has led to a variety of
research in the area of information retrieval and recommender systems
focused on fairness. While in this monograph, we mostly discuss search
systems, the fairness notions overlap with recommender systems as well.
Search and recommender systems may differ in multiple ways, but a
primary difference is that, in search, the user explicitly states their
information need through a query while in recommender systems a
user may not be actively seeking any particular information. Despite
differences, most of the existing research on fairness in ranking applies
to both search and recommender systems.

The topic of diversity in information retrieval has been studied for
a long time (Boyce, 1982; Carbonell and Goldstein, 1998; Clarke et al.,
2008). At first glance, fairness and diversity in ranking can appear
related, since they both lead to more diverse rankings. However, their
motivation and mechanisms are fundamentally different. Diversification
methods mostly only sought to maximize the utility for the user alone,
while fairness methods sought to provide fairness guarantees that might
be at odds with the average user utility overall. Prior work on diversity
in ranking can be categorized into three kinds of diversity considerations
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(Radlinski et al., 2009) – under extrinsic diversity, the utility measure
accounts for uncertainty and diminishing returns from multiple relevant
results (Carbonell and Goldstein, 1998; Radlinski et al., 2008); while
under intrinsic diversity, the utility measure considers rankings as
portfolios and reflects redundancy (Clarke et al., 2008); and finally under
exploration diversity (Radlinski et al., 2009), the aim is to maximize
utility to the user in the long term through more effective learning. All
these diversity considerations are still intended to increase utility for
the user side of stakeholders alone, and hence different in motivation
from fairness considerations.

In this section, we organize the existing research into a taxonomy
based on the aspects of ranking that a system designer should con-
sider while designing such systems. However, it is important to note
that this taxonomy is neither hierarchical nor orthogonal, but a set of
perspectives through which fairness questions arise in these systems.
Moreover, the choice of an appropriate fairness constraint is always
domain-dependent, so a careful analysis is required. Also, since this
is an active area of research and deals with sophisticated large-scale
systems with many interdependent moving parts, the taxonomy may
not be entirely comprehensive. Therefore, we aim to provide a set of
diverse and overlapping perspectives for the reader. The taxonomy is
summarized in Table 5.1 based on the types of fairness notions that
are discussed later in Sections 5.1 to 5.7. In closing the section, we will
address various challenges in evaluating and mitigating the proposed
criteria, as well as explore the limitations of existing approaches.

5.1 Worldviews Based Categorization

In line with the worldview framework that we discussed in Section 2.1,
Zehlike et al. (2022) classify fairness notions in ranking on the spectrum
between the two extreme worldviews – What you see is what you get
(WYSIWYG) and We are all equal (WAE). WYSIWYG assumes that
the observation space (OS, containing, features such as scores, qualifi-
cations, etc.) accurately reflects the true properties of individuals. Any
differences seen between groups are taken at face value. WAE assumes
that observed differences between groups are solely the result of bi-
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Table 5.1: Taxonomies for ranking fairness definitions

Type Fairness notion References

Worldviews WYSIWYG Friedler et al. (2021)WAE

Target Individual Fairness Biega et al. (2018), Diaz et al. (2020)
Group Fairness Singh and Joachims (2018), Beutel et al. (2019a)

Parity type
Composition-based Celis et al. (2018), Zehlike et al. (2017)
Accuracy-based Dwork et al. (2019), Beutel et al. (2019a), etc.
Opportunity-based Singh and Joachims (2018), Biega et al. (2018)

Stakeholders Consumers Yao and Huang (2017), Ekstrand et al. (2018)
Providers Abdollahpouri et al. (2017), Singh and Joachims (2018)
Others Mitchell et al. (2021) and Karako and Manggala (2018)

Mitigation Strategies
Pre-processing Zemel et al. (2013)
In-processing Zehlike and Castillo (2020), Singh and Joachims (2019)
Post-processing Singh and Joachims (2018), Biega et al. (2018)

Granularity Single-shot Zehlike et al. (2017), Yang and Stoyanovich (2017), etc.
Amortized Singh and Joachims (2018), Biega et al. (2018), etc.

Timescale Point-in-time Most of the existing work
Dynamic Morik et al. (2020) and Yang and Ai (2021), etc.

ased processes of observation. It assumes that, in the true underlying
construct space (CS), groups have equal distributions of qualifications
and merit. The choice of worldview and mitigation strategy depends
on context and assumptions about the source of unfairness. However,
making these assumptions explicit might be crucial for selecting appro-
priate fairness interventions and evaluation methods. Their paper also
argues that clarity on the normative underpinnings of fairness methods
is currently lacking in much of the research in this area.

5.2 Individual vs. Group Fairness

Dwork et al. (2012) defined individual fairness as the property of a
machine learning model to treat similar individuals similarly. Individuals
are considered as being similar to each other in some construct space
that reflects the merits of the individuals, and the similarity of outcomes
may be defined using the difference in the predicted label, score, position,
or other measurable outcomes. Several works extend this definition to
the task of ranking, such as Biega et al. (2018) and Diaz et al. (2020).

On the other hand, group fairness is defined based on the difference
in outcomes at the population level between groups. Group fairness does
not necessarily imply that similar individuals receive similar outcomes,



5.2. Individual vs. Group Fairness 315

since individuals that are similar but belong to a different group, may
receive very different outcomes. Definitions like demographic parity,
equalized odds, and equal opportunity (discussed in Section 2) have
been adopted to ranking tasks based on the same principles of mitigating
disparity in treatment or outcome of different groups, as we will see in
later sections. Note that, in ranking, these groups may be defined either
on the set of users (User Fairness) or the set of items or documents
being ranked (Provider Fairness) – a distinction that we will clarify in
Section 5.4. Several works like Kleinberg et al. (2017) and Chouldechova
(2017) have shown that such constraints may have inherent trade-offs
that do not allow both individual and group-level constraints to be
satisfied simultaneously.

Considering group fairness comes with its own shortcomings and
limitations. First, each individual (user or ranked document) might
belong to multiple groups. Second, the group membership information
(or, in other words, sensitive attribute) might be noisy, incomplete or
unusable. Finally, whether a particular sensitive attribute is a meaningful
fairness dimension could depend on the context or the domain, and
must be carefully applied. In the rest of this section, we will discuss
these shortcomings and limitations one by one.

When a system has to consider group fairness with respect to
multiple groups at once (e.g., race and gender), there is a possibility
that individuals (users or providers) belonging to multiple underserved
groups may further be neglected because of the design of fairness
evaluation and mitigation strategy. This framework that considers
overlapping dimensions in the context of fairness is often referred to
as “intersectionality” (Cho et al., 2013). Work on “subgroup fairness”
takes some steps to tackle this problem of multiple protected groups
(Kearns et al., 2017; Kearns et al., 2019; Foulds et al., 2020) but the
topic is still relatively unexplored and an active area of research.

In practical search systems, to quantify disparities, we focus on
differences between groups that divide users or providers based on
demographic identities. We often compare model performance or overall
outcomes between these groups. However, in industry settings, such
demographic information is often unavailable for privacy or legal reasons,
and inferring these characteristics carries its own risks and biases.
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In the case of noisy attributes, Ghazimatin et al. (2022) explored
scenarios where sensitive attributes are noisy or unavailable. They
investigate measuring group fairness in ranking when group membership
labels are noisy or unavailable, proposing methods using proxy labels
and demonstrating their effectiveness through theoretical analysis and
experiments. Mehrotra and Vishnoi (2022) focus on fair ranking when
socially-salient attributes of items are noisy, presenting a framework that
incorporates group fairness requirements and probabilistic information
about attribute perturbations, providing provable guarantees on fairness
and utility. Similarly, Lazovich et al. (2022) evaluate distributional
inequality metrics to measure disparities in content exposure on the
Twitter algorithmic timeline, using these metrics to identify algorithms
contributing to skewed outcomes and providing criteria for operational
use by ML practitioners. Together, these works highlight the importance
of addressing fairness in contexts where sensitive information is imperfect
or incomplete, and group fairness notions cannot be directly defined.

Finally, when implementing group fairness in search systems, re-
searchers must carefully consider whether specific attributes truly war-
rant treatment as fairness concerns. Mitra (2024) critiques certain
approaches to ranking fairness, particularly those that treat political
ideologies as simple left-versus-right classifications. This oversimplified
framework risks reducing complex political discourse to a linear spec-
trum and incorrectly assumes both ends deserve equal exposure—a
phenomenon termed algorithmic bothsidesism. Similarly, Pinney et al.
(2023) and Jacobs and Wallach (2021) warn against the casual use of
race and gender demographics in fairness metrics without fully under-
standing the underlying implications and assumptions. They provide
guidelines for the ethical incorporation of these attributes in informa-
tion access systems. To address these complex challenges, Mitra (2024)
advocates for an interdisciplinary approach, suggesting that researchers
collaborate with experts in democratic theory, critical theory, and the
critical study of technology to develop more sophisticated and ethically
sound fairness frameworks.
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5.3 Parity-type Based Categorization

The definitions proposed in the literature for fairness in ranking recently
can also be categorized into three broad categories: Composition-based,
Accuracy-based, and Opportunity-based notions, as summarized in Table
5.2. In this section, we will elaborate on each of these three categories
with some definitions. The main mathematical symbols and their defini-
tions are shown in Table 5.3.
Table 5.2: Categorizing fairness metrics based on composition, accuracy, and notions
of opportunity.

Categories of Ranking Fairness Definitions (Parity-based)

Composition-based rND, rKL, FA∗IR Yang and Stoyanovich (2017),
Celis et al. (2018), Asudeh et
al. (2019), Zehlike et al. (2017),
Mehrotra et al. (2018), and
Zehlike and Castillo (2020).

Accuracy-based x-AUC, Marginal Pairwise
Equal Opportunity

Kallus and Zhou (2019), Beutel
et al. (2019a), Narasimhan et al.
(2020), and Lahoti et al. (2019).

Opportunity-based Equal Expected Exposure,
Demographic Parity, Ex-
posed Utility Ratio, Real-
ized Utility Ratio

Singh and Joachims (2017),
Singh and Joachims (2018),
Biega et al. (2018), and Diaz
et al. (2020).

Table 5.3: Notation for the ranking setup.

Notation

Query q

Document/Item d

Candidate set D
Relevance rel(d|q)
Model prediction/score fθ(d|q)
Ranking (a permutation of D) r, σ

Position of d in ranking r rank(d|r)
Utility of a ranking U(r|q)
Group of documents G
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5.3.1 Composition-based Ranking Fairness

The composition-based notions of fairness for ranking operate along
the lines of demographic parity (discussed in Section 2.2.1), proposing
definitions and methods that minimize the difference in the (weighted)
representation between groups in a prefix of the ranking (Yang and
Stoyanovich, 2017; Celis et al., 2018; Asudeh et al., 2019; Zehlike et al.,
2017; Mehrotra et al., 2018; Zehlike and Castillo, 2020).

Yang and Stoyanovich (2017) propose statistical parity-based mea-
sures that compute the difference in the distribution of different groups
for different prefixes of the ranking (top-10, top-20, and so forth). The
differences are then averaged for these prefixes using a discounted weight-
ing (like in evaluation measures such as DCG). For mitigation, this
measure is used as a regularization term for a ranking algorithm.

Top-k Ranking Fairness Metrics. Yang and Stoyanovich (2017)
introduced metrics such as normalized discounted difference (rND),
ratio (rRD), and KL-divergence (rKL) that are defined to measure the
difference between the proportions of the protected group in the top-k
of a ranking and the general set of documents.

Normalized discounted difference (rND) (Equation 5.1) computes
the difference between the proportions of the protected group G1 in the
top-k and in the overall set, and discounts it over different prefixes of
the ranking (k = 10, 20, . . . , n).

rND(r) = 1
Z

n∑
k=10,20,...

1
log2k

( |r1...k ∩ G1|
k

− |G1|
n

)
(5.1)

where r1...k is the top-k documents.
Similarly, the normalized discounted ratio (rRD) is defined as the

difference between the ratio of the count of documents from each group
in the prefix to the ratio of the count of documents in the overall set.

rRD(r) = 1
Z

n∑
k=10,20,...

1
log2k

( |r1...k ∩ G1|
|r1...k ∩ G2|

− |G1|
|G2|

)
(5.2)

when either the numerator or denominator is 0, the term is 0.
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rKL(r) = 1
Z

n∑
k=10,20,...

1
log2k

DKL(Pk||Q)

where Pk =
(

|r1...k∩G1|
k , |r1...k∩G2|

k

)
, and Q =

(
|G1|
n , |G2|

n

)
, and Z is the

normalization value that is equal to the highest possible value of the
corresponding metric.

Zehlike et al. (2017) formulate the problem of finding a “fair top-k
ranking” that optimizes utility while satisfying two sets of constraints:
first, in-group monotonicity for utility (i.e., more relevant items above
less relevant within the group), and second, a fairness constraint that the
proportion of protected group items in every prefix of the top-k ranking
is above a minimum threshold. Celis et al. (2018) propose a constrained
maximum weight matching algorithm for ranking a set of items efficiently
under a fairness constraint that indicates the maximum number of
items with each sensitive attribute allowed in the top positions. Other
approaches, like Asudeh et al. (2019), have also looked at the task of
designing fair scoring functions that satisfy desirable fairness constraints
analogous to fairness constraints for risk assessment tools (for example,
those mentioned in Section 2). In the absence of document level group
membership information, recent works like Abolghasemi et al. (2024)
suggest metrics to measure bias based on aggregating unbiasedness
scores over terms present in each document in a ranked list.

5.3.2 Accuracy-based Ranking Fairness

Accuracy-based notions define fairness as parity over accuracy-based
metrics for ranking. Since a ranking can be defined as an aggregate of
pairwise comparisons between ranked documents, fairness in ranking can
be defined as the fairness of a model trying to compare pairs of items,
where the items may belong to the same or different groups (Beutel
et al., 2019a; Narasimhan et al., 2020). This can also be translated into
measures such as AUC metrics that use a scoring function to define an
ordering over items (Kallus and Zhou, 2019). Mathematically, pairwise
accuracy can be defined as:

PairwiseAccuracy = P (fθ(dj |q) > fθ(dj′ |q) | y(dj |q) > y(dj′ |q),
dj , dj′ ∈ D(q)), (5.3)



320 Fairness in Ranked Outputs

where y(d|q) is the true relevance (or user engagement label, e.g., click)
for item d for query q. Now, the pairwise accuracy fairness criterion can
be defined in terms of the parity of PairwiseAccuracy between items
belonging to two groups G1 and G2. Furthermore, since each comparison
involves two items, this pairwise accuracy definition can be specifically
tuned to consider pairs between items belonging to the same or different
groups. Beutel et al. (2019a) call these metrics as Intra-pairwise and
Inter-pairwise accuracy and fairness metrics. Kallus and Zhou (2019)
extend similar definitions to define intra- and inter-group AUC metrics.

P (fθ(dj |q) > fθ(dj′ |q) | y(dj |q) > y(dj′ |q), dj ∈ G1, dj′ ∈ G1

= P (fθ(dj |q) > fθ(dj′ |q) | y(dj |q) > y(dj′ |q), dj ∈ G2, dj′ ∈ G2)
(Intra group pairwise fairness)

P (fθ(dj |q) > fθ(dj′ |q) | y(dj |q) > y(dj′ |q), dj ∈ G1, dj′ ∈ G2)
= P (fθ(dj |q) > fθ(dj′ |q) | y(dj |q) > y(dj′ |q), dj ∈ G2, dj′ ∈ G1)

(Inter group pairwise fairness)

Similarly to pairwise accuracy definitions, evidence-based notions,
such as Dwork et al. (2019) propose semantic notions such as domination-
compatibility and evidence-consistency, based on the relative order of
subsets within the training data.

5.3.3 Opportunity-based Fairness

Another way to define fairness in ranking systems is to consider the
economic opportunity the platform provides to its stakeholders. To
the users, this opportunity may be provided in terms of the utility
of the results shown by the system, for example, employment-related
scenarios where a user might be searching for job opportunities with a
certain title. However, an often overlooked aspect is the opportunity
these systems provide to the item-side stakeholders often referred to as
the providers, for example, content creators, manufacturers, merchants,
etc. To such stakeholders, the economic opportunity is provided in
the form of exposure to users. Exposure translates to clicks or further
downstream actions, such as likes, purchases, etc. that may translate to
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tangible economic outcomes. Hence, several works have argued against a
winner-take-all allocation of economic opportunity to the ranked items
or groups of items and that the allocation should be based on the notion
of merit (Singh and Joachims, 2017; Singh and Joachims, 2018; Biega
et al., 2018; Diaz et al., 2020). While we discuss this multi-stakeholder
perspective of fairness in ranking in Section 5.4, we will elaborate on the
definitions that specifically define fairness based on the fair allocation
of economic opportunity, and we will specifically focus on provider-side
fairness.

Merit. In a ranking task, each item can be assumed to have a merit
based on its relevance or usefulness to the query, the user, and the
context. This merit can be aggregated over a group of providers when
considering group fairness, for example, the relevance of different tracks
by an artist in the candidate set can be grouped to define the merit of
the group as the sum or the average of merits of individual songs by
the artist.

User Attention and Exposure. User click models used to evaluate
ranking systems, such as position-based model (PBM) (Craswell et
al., 2008b; Joachims et al., 2005) and cascade model (Craswell et al.,
2008b), are useful in defining how a user’s attention over a ranking may
vary going from the top of the ranking to the bottom1. Based on the
assumption of a user click model and using some logged data, we can
compute the position bias at all positions k in the ranking. Technically,
position bias at position k is defined as the probability that a user who
views the ranking will examine the item ranked at position k. This
quantity can be defined for each ranking, or it could be defined as
a marginal probability over different rankings under the same query.
The position bias captures how much attention an item will receive,
where higher positions are expected to receive more attention than
lower positions. Under a position-based model (PBM), the position bias

1We also cover user click models in more detail in the next section as a relevant
challenge to evaluate and train ranking models in the presence of user’s cognitive
biases. However, we also encourage the reader to see Chuklin et al. (2015) for a
thorough study of user behavior models.
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at position k is only a function of k, while for other click models it
may depend on the collection of items and the distribution of queries.
In operational systems, position bias can be measured directly using
eye tracking (Joachims et al., 2007a), or indirectly estimated through
swap experiments (Joachims et al., 2017a), or intervention harvesting to
harness natural experiments occurring in observational data (Agarwal
et al., 2019b; Fang et al., 2019).

Meanwhile, the exposure is defined as the expected amount of atten-
tion a document receives. In other words, it is the position bias at the
position where the document is placed in the ranking. Most recent work
uses a position bias model (PBM) where the probability of attention to
an item at a particular position is only dependent on the position, and
we will also limit our discussion to this model, which is characterized
by a discounting factor for each position k denoted by δ(k).

Stochastic Rankings. In search systems, rankings occur in a repeated
decision-making setting, i.e., the same set of documents may be consid-
ered for ranking at a different point in time by the same system (e.g., the
same query by a different user). In repeated ranking settings, one way
to induce variations is to modify rankings over a sequence of decisions
to satisfy some constraint in an amortized fashion (e.g., Biega et al.,
2018), or induce randomness or stochasticity into each decision such
that the constraint is satisfied in expectation over multiple rankings
(Singh and Joachims, 2018; Diaz et al., 2020). Stochastic rankings prove
to be a useful tool to enforce fairness constraints on ranking algorithms
and can be represented in the following way for a set of documents D.

A stochastic ranking, often denoted by π, is a distribution over
all possible permutations of the candidate set D (see the illustration
in Figure 5.1). A stochastic ranking can also be reduced to a matrix
Pπ of size |D| × |D| where Pπ

i,j is the probability that R sampled
from the stochastic ranking places the document di at rank j. In this
representation, Pπ is a doubly stochastic matrix, i.e., the sum of each
row and each column of the matrix is equal to 1. In other words, the
sum of probabilities for each position is 1 and the sum of probabilities
for each document is 1, i.e.,

∑
i Pπ

i,j = 1 and
∑

j Pπ
i,j = 1. However,

such a representation does not necessarily map to a unique distribution
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Figure 5.1: An illustrative representation of a distribution over different permuta-
tions of a set of documents, i.e., stochastic rankings (figure from Diaz et al. (2020)).
Stochastic rankings are an especially important tool in settings that allow for re-
peated rankings since they allow the constraints to be satisfied in expectation over a
distribution of users, queries or sessions, in an amortized fashion.

over rankings but is useful to write different utility metrics like DCG
of the stochastic ranking as a linear function over relevance (which is
useful in post-processing methods we study next). In addition, such a
matrix P can be decomposed into a convex sum of several permutation
matrices (each corresponding to a deterministic ranking) such that
the coefficients are equal to the discrete probabilities of each of the
deterministic rankings of the candidate set D under the stochastic
distribution π (Singh and Joachims, 2018).

Individually Fair Exposure. Using the formulation of merit and ex-
posure defined above, Biega et al. (2018) define an individual fairness
constraint that requires a provider’s exposure (say R(d)) to be in pro-
portion to their merit (say A(d)), i.e., the ratio A(d)

R(d) = c for a constant
c for all documents d, and violations of this principle are measured
through the L1 norm IneqAttn =

∑
d∈D |A(d)− cR(d))|. To satisfy such

a constraint, they define an integer linear program that modifies the
ranking over a sequence of rankings.
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Similarly, Diaz et al. (2020) define the “equal exposure” principle in
the case of graded relevances, such that for all documents at the same
relevance grade (i.e., with equal merit) A(d) = c′, the documents should
receive equal expected exposure over a stochastic ranking π. Given such
a target stochastic ranking πtarget, the expected exposure loss (EEL)
can be defined as:

EEL(π) =
∑
d∈D

(
EE(d|π) − EE(d|πtarget)

)2

where EE(d|π) is the expected exposure for an item d that can be
computed as EE(d|π) =

∑
r δ(rank(d|r)) P (r|π) using the position-

based discount factor δ.

Group Fair Exposure. The fair allocation of exposure principle can
be extended to group fairness by aggregating exposure and merit over
items belonging to each group (G1, G2, etc.). Extending the expected
exposure definition to the group setting yields

EE(G|π) =
∑
d∈G

EE(d|π),

that can further be used to define the following fairness notions presented
in Singh and Joachims (2018):

EE(G1|π) = EE(G2|π) (demographic parity)

EUR(π) = EE(G1|π)/RG1

EE(G2|π)/RG2
(exposed utility ratio)

RUR(π) = Eπ[µ(G1|π)]/RG1

Eπ[µ(G2|π)]/RG2
(realized utility ratio)

where µ(G|π) =
∑

d∈G EE(d|π)u(d) and RG =
∑

d∈G u(d) where u(d) is
the relevance of document d for the given context or query.

While demographic parity is a version of the statistical parity con-
straint that ignores the merit of each group, and can simply be called
equal exposure, EUR and RUR2 are group fairness analogs of amortized

2We use the names of the metrics provided by Raj and Ekstrand (2022) for the
constraints referred to as “disparate treatment ratio” and “disparate impact ratio”
respectively by Singh and Joachims (2018).
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individual attention fairness constraints proposed by Biega et al. (2018).
Note that these group fairness constraints may not always be satisfiable
given a configuration of document relevances and position biases (for
exposure at each position). Singh and Joachims (2019) alleviate this
unsatisfiability by introducing one-sided notions of these fairness con-
straints that also help with optimizing corresponding fairness metrics
while doing learning-to-rank.

Related research also combines the opportunity-based and accuracy-
based notions by stating that while the economic opportunity allocated
to the agents must be consistent with their merit, the merit should
also be estimated consistently with respect to existing evidence on the
relevance of the items (Singh et al., 2021). In other words, an ideal
ranking system would also consider the lack of data about an item or a
provider as a signal of uncertainty and allocate exposure based on these
uncertainties, in effect addressing the cold-start problem often ignored
in the rest of the research.

Amplification of Past Biases. Singh and Joachims (2018) provide
a synthetic example to motivate, how a small difference in relevance
(possibly due to biased data) in a ranking may lead to a much larger
difference in opportunity for a protected group (Figure 5.2). In the
example, a set of male and female candidates is being ranked for a
recruiter searching for candidates relevant to a job opening. Let us say
the ranking system orders six candidates in the decreasing order of
their probability of getting an interview based on some historical data
collected by the system. If there was a difference of 3% in the average
interview rate of male and female candidates in the past data, the
system may now further amplify this difference in terms of the amount
of exposure male and female candidates receive. The group fairness
constraints discussed above are one way to mitigate such amplification
effects.

5.4 Stakeholder-specific Fairness Definitions

In search systems, the items to be ranked are not only websites but
could also be products, artistic content, jobs, job candidates, rental
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Figure 5.2: Jobseeker example from Singh and Joachims (2018) to illustrate how a
small difference in relevance can lead to a large difference in exposure (an opportunity)
for the group of female job seekers.

Table 5.4: Different stakeholders of search systems.

Stakeholder Terms used

User users, consumers.
Provider content providers, creators, candidates, merchants.
Other stakeholders platform, side stakeholders, ranked subjects, etc.

properties, or other entities that transfer economic benefit, and it is
widely recognized that the rankings have an impact not only on the user
but also on the providers of the items (e.g., merchants, job candidates,
creators, etc.) as discussed in Section 5.3.3. Moreover, the platform
itself is a stakeholder with its own set of objectives. These different
stakeholders are referred to as different terms in different domains listed
in Table 5.4. In the domain of recommender systems, research argues
for a multi-stakeholder perspective of recommender systems that go
beyond user-centric utility maximization (Abdollahpouri et al., 2019;
Burke et al., 2018). This perspective leads to considering both fairness
for users of the system (Yao and Huang, 2017; Xiao et al., 2017), and
for producers (e.g., merchants, artists, job seekers, etc.).
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User Fairness. User fairness notions consider whether a recommender
system treats different users fairly. This could include things like similar
accuracy for different groups of users (Yao and Huang, 2017; Ekstrand
et al., 2018). User fairness is often tricky to define as it requires moving
beyond accuracy as the only target since user satisfaction depends on
more than just accuracy, like diversity, novelty, serendipity, etc. – char-
acteristics that may be heterogeneous with respect to user demographics
(Mehrotra et al., 2017). Another way to define user fairness is through
the lens of quality of service, and more recently, Wu et al. (2024a)
introduced the Group-Aware Search Success (GA-SS) metric, redefining
search success to ensure satisfaction across all demographic groups by
incorporating demographic variances in user intent and validating it
with real-world datasets.

Another lens through which to view user fairness is the distribution
of harm or deprivation of opportunity. Users may come to a search engine
looking for opportunities like housing and employment. Although laws
such as the Fair Housing Act3 or the Equal Employment Opportunity
Act4 prevents discrimination based on protected attributes of the user,
a fair search system needs to ensure that there is no disparity in the
search results shown to users with respect to their protected groups.
While it is often difficult and contentious to evaluate and prove such
discrimination in information access systems, there have been notable
examples. For example, in the context of advertising-based systems,
multiple case studies have shown that certain ad targeting platforms
have allowed algorithms to unfairly target harm or unevenly distribute
opportunity in ad campaigns related to housing, employment, or people
search (Sweeney, 2013; Ali et al., 2019).

Furthermore, principles such as privacy or data minimalism may also
conflict with user fairness, as users of underrepresented minorities may
experience a worse trade-off in terms of privacy and utility (Bagdasaryan
et al., 2019).

3https://www.justice.gov/crt/fair-housing-act-1
4https://www.eeoc.gov/history/equal-employment-opportunity-act-1972

https://www.justice.gov/crt/fair-housing-act-1
https://www.eeoc.gov/history/equal-employment-opportunity-act-1972
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Provider Fairness. Much of the foundation of information retrieval
for search systems comes from library science, where the goal is to
find books in a library that meet a user’s information need, and one
of the guiding principles for the optimization of ranking systems still
dates back to the 1970s, called the Probability Ranking Principle (PRP)
where Robertson (1977) proposed that an ideal ranking should order
items in the decreasing order of their probability of relevance to the
user and that such a ranking maximizes user utility of the retrieval
system. However, such an uncompromising focus on user utility has
recently been questioned since we are no longer just ranking books in
a library but also ranking people, properties, art, and opinions. In the
modern era of such systems, an important set of stakeholders, especially
from the perspective of fairness, is the set of items being ranked or the
providers of these items. A provider generally refers to an entity that is
responsible for the items and often derives utility from a system that
exposes these items to the users, e.g., artist of a song, author of a book
or an article, merchant or manufacturer of a product, or a job candidate
themselves. Traditional search and recommender systems often ignore
this stakeholder while optimizing for user-side utility. However, from
the perspective of item popularity (Celma and Cano, 2008; Fleder and
Hosanagar, 2009) and how users view rankings (Joachims et al., 2005),
the rich-get-richer effect due to ranking algorithms may lead to a large
disparity in the allocation of utility that the providers seek. Such a
concern is reflected in the fair exposure-based notions of fairness that
we have already discussed in Section 5.3.3.

Measurement and improvement of both user fairness and item fair-
ness simultaneously is also an important challenge in real-world systems.
Many existing methods focus only on one or the other, as there is often
a trade-off between the two (Wang et al., 2023b).

Other Stakeholders. Besides the users and providers, there are often
other stakeholders who derive value from the rankings directly or indi-
rectly (Abdollahpouri and Burke, 2019). For example, in a food delivery
platform like UberEats, in addition to the users and the restaurants
(providers), one of the stakeholders involved is the drivers, who may not
be actively involved in the decision-making process, but the decisions
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impact them. For example, a concern may be that a protected group
of drivers may receive a disproportionately higher number of difficult
and/or low-tip jobs (Ekstrand et al., 2022).

Joint Multi-stakeholder Fairness. Fairness concerns for one set of
stakeholders may not always occur independently of the other set of
stakeholders, and resolving this concern for one side may not automat-
ically resolve it for others. For example, in the case of rental listings,
the system may not discriminate with respect to the ethnicity, race, or
religion of the renters; however, the system could be unfair to landlords
belonging to a minority group by only exposing them to renters with
low credit that affects the economic opportunities they expect from the
platform (Ekstrand et al., 2022). Most research often frames the problem
of jointly optimizing for the fairness of more than one stakeholder as a
resource allocation problem from economics. Wang and Joachims (2021)
formalize user fairness as an economic social-welfare objective where
user groups differ in their intent distributions, and relate this to submod-
ular diversity objectives while using the setup of Singh and Joachims
(2018) to solve for item fairness. The ranking obtained through their
solution satisfies both user and item fairness simultaneously. Similarly,
Wu et al. (2022b) and Wu et al. (2022a) propose a joint-multisided
exposure fairness setup extending the expected exposure constraints
defined by Diaz et al. (2020) to define and satisfy joint fairness for users
and item providers in stochastic rankings.

5.5 Mitigating Unfairness in Rankings

As illustrated in Figure 5.3, existing works on enhancing the fairness
properties of ranked outputs can also be categorized into the same
three categories as we studied in Section 2 in the case of unfairness
mitigation in supervised learning for classification or scoring models,
depending on where in the process of building a machine learning
model the intervention is made, i.e., pre-processing, in-processing, and
post-processing methods.

Each of these approaches has its strengths and weaknesses. While
pre-processing approaches modify the input dataset to deter the sub-
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Figure 5.3: Mitigation strategies for fairness in ranking can be categorized into
pre-processing, in-processing and post-processing techniques based on which part of
the learning-to-rank pipeline they act upon.

sequent learning methods from using biased information that may
lead to unfair outcomes, they are often inadequate in ensuring that
fairness is guaranteed for the downstream ranking tasks. Meanwhile,
post-processing methods can directly tune the ranking to satisfy a
specific fairness constraint, but it is often limited by the accuracy of
the model in predicting the relevance of individual items and there
is a risk of amplifying the bias of an unfair prediction model (Singh
and Joachims, 2019). In-processing techniques try to ensure that the
model can learn to output rankings (for unseen queries and candidate
sets) that satisfy fairness constraints at inference time. In practice, a
more cautious approach would involve evaluating unfairness on a set
of unseen, novel queries where the ground truth relevances are known
for the entire dataset. Prior work has mostly used simulation setups
over datasets where the relevance labels are available. We discuss this
challenge of evaluating fair ranking models later in Section 5.8.

5.5.1 Pre-processing Methods

For rankings, pre-processing input data to mitigate unfairness shares the
same objectives and methodology as other pre-processing methods for
supervised learning tasks. For example, Zemel et al. (2013) introduced
a method to learn fair representations that can be utilized to find a
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latent representation that encodes the data well but obfuscates infor-
mation about protected attributes. On the other hand, Feldman et al.
(2015) proposed a method called Disparate impact remover that edits
feature values to increase group fairness for a downstream task while
preserving rank-ordering within each group. Similarly, Calmon et al.
(2017) presented a pre-processing technique that learns a probabilistic
transformation that edits the features and labels in the dataset consid-
ering group fairness, individual distortion, and data fidelity constraints
and objectives. Finally, some methods have also proposed reweighing
the training examples in the training set on the basis of the sensitive
attribute to achieve better performance in underrepresented groups
(Kamiran and Calders, 2012). In the context of recommender systems,
Ekstrand et al. (2018) propose using resampling to adjust the proportion
of different user groups seen by the model during training, which they
show works on alleviating user unfairness in a simulated experiment. On
the other hand, Rastegarpanah et al. (2021) propose adding additional
“antidote data” (e.g., fake user data) to the training data to improve
the fairness properties of the training process without modifying the
loss function.

Overall, pre-processing methods provide a model-agnostic way of
modifying the dataset or the sampling and sample weighting process
during training. The simplicity of the approaches makes them highly
interpretable from the perspective of a system designer. However, since
they do not directly target a specific fairness concern and since these
methods are always followed by the other stages of the pipeline, their
impact on the fairness of the final ranking may be minimal.

5.5.2 In-processing Methods

Learning-to-Rank (LTR, sometimes L2R) methods are a class of ma-
chine learning methods to train models that, given a set of candidate
documents/items and some context (e.g., user, query), can output a
ranking for the set of items. Broadly speaking, LTR methods can be
categorized into three kinds of approaches: pointwise LTR, pairwise
LTR, and listwise LTR. Pointwise LTR is akin to learning a pointwise
scoring function that outputs a scalar number for each document and
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context pair, e.g., by treating the ranking problem as a regression or
a classification problem to predict the relevance score or preference of
individual candidates. These scores can then be sorted in decreasing
order to obtain a ranking. Even though it is simple to implement using
existing supervised learning techniques, it may not yield a ranking with
good precision because it ignores the order or relationship between
items. On the other hand, pairwise LTR approaches frame ranking as
a preference classification problem by comparing pairs of data points
and predicting which one of the two points should be ranked higher.
Although the number of training instances grows quadratically with the
number of candidate items, explicitly considering pairs during training
often leads to higher precision. Finally, listwise LTR approaches directly
optimize ranking measures such as Mean Average Precision (MAP) or
Normalized Discounted Cumulative Gain (NDCG@k) when training by
considering the entire list of items in a candidate set. Since these metrics
are often used as evaluation metrics for LTR methods, training directly
or using surrogates of these metrics is often very effective. However, the
loss functions are complex and non-convex, so the optimization can be
tricky and unstable.

Fairness in LTR. Mitigating unfairness in pointwise LTR methods
can be done using any of the in-processing methods proposed in the
literature on fairness for classification and regression settings. Section 2
provides a survey of in-processing approaches to implementing fairness
in a supervised learning setting that may be directly applied while
training any scoring function to be used as a ranking model.

For pairwise and listwise ranking, the general structure of strategies
is to add a fairness loss to the objective function during training, i.e.,

L = Lranking + λLfair

where λ is a regularization constant that can be fixed or tuned as a
hyperparameter. Here, the loss function Lranking is dependent on the
LTR algorithm being used, and Lfair depends on the fairness constraint
being implemented. Although some approaches directly add the fairness
evaluation metric into the loss function, some approaches use indirect
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regularization, either by using adversarial learning or using a surrogate
loss function to allow the models to learn to fairly rank items.

For provider side fairness, Singh and Joachims (2019) propose Fair-
PG-Rank that uses a policy gradient method to train a stochastic
ranking policy (π) that maximizes an arbitrary utility metric, like
nDCG, given some context features and a candidate set (i.e., a listwise
approach), but also satisfies a given exposure-based fairness constraint
(Section 5.3.3) using a regularization term in the policy gradient objec-
tive. Zehlike and Castillo (2020) implement a regularization objective
that is an approximation of the group-wise exposure fairness criterion
(Singh and Joachims, 2018) using only the probability of each docu-
ment showing up on the top-1 position. This approximation allows the
objective to be differentiable and optimization over the joint objective
is done using gradient descent.

To implement pairwise accuracy fairness constraints (Section 5.3.2),
Beutel et al. (2019a) propose a pairwise regularizer that calculates the
correlation between the residual difference of model’s score for a clicked
and an unclicked item and the group membership of the clicked item.
As a result, the model is penalized if its ability to predict which item
was clicked is better for one group than the other. While developing
this approach, they also prove that merely matching the mean squared
errors between groups or fairly calibrating the model does not imply
ranking fairness, and also show that improving pairwise fairness also
improves exposure fairness. Another set of approaches to fairness in
recommender systems enforce the independence of rank and group
membership P (rank(d) ≤ k | d ∈ G) = P (rank(d) ≤ k) (Kamishima
et al., 2018), or modify the latent representation to ensure that nearest
neighbors are balanced between protected and unprotected groups to
ensure that protected group items also have a good chance of being
recommended during retrieval (Burke et al., 2018).

Similar approaches have also been proposed to ensure user fairness,
including Yao and Huang (2017) who replace their proposed absolute
difference-based user fairness metrics with a smoothed regularizer based
on Huber loss, where the absolute difference is replaced with a squared
difference for values less than 1. Kamishima et al. (2018) use a statistical
independence-based regularizer between the protected attribute of the
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user and the results, similar to their approach for item side fairness,
and similarly, Beutel et al. (2017) propose an adversarial learning setup
to minimize the ability of a user’s embedding to be used to predict their
sensitive attribute (such as gender, age, etc.). Gao and Shah (2019) offer
a different perspective on the optimization with fairness constraints
problems by identifying a solution space for a specific dataset. This
space can then be used to compare different optimization policies to find
the optimal one. Wang et al. (2022a) adopt a meta-learning framework
to explicitly train a meta-learner from an unbiased sampled dataset
(meta-dataset), and simultaneously, train a listwise learning-to-rank
model on the whole (biased) dataset governed by “fair” loss weights.
The meta-learner serves as a weighting function to make the ranking
loss attend more to the minority group. The approach can be viewed
as a hybrid of pre-processing and in-processing methods. Wang et al.
(2024a) further extended the work by utilizing curriculum learning to
dynamically adjust meta-datasets during training.

5.5.3 Post-processing Methods

To make the ranked output more fair, several works propose different
methods that modify the ranking after the ranking model produces a
ranking or a set of scores for each item in the candidate set that can
be sorted to generate a ranking. In other words, there is a reranking
step involved in satisfying an appropriate fairness constraint that uses
these initial rankings or model predictions. Wang et al. (2023b) divide
the research on re-ranking methods into three types: slot-wise, user-
wise, and global reranking methods. While slot-wise reranking methods
construct a ranking one item at a time by applying a set of rules
or by modifying scores based on the previously ranked items, user-
wise reranking methods construct rankings for each user based on
the optimization goal of the entire list, and global reranking methods
optimize for multiple users and the entire ranking simultaneously to
optimize the fairness and utility objectives.

FA∗IR (Zehlike et al., 2017) formulate the problem of finding a
fair top-k ranking that optimizes utility while satisfying two sets of
constraints: first, in-group monotonicity for utility (i.e., more relevant
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items above less relevant within the group), and second, a fairness
constraint that the proportion of protected group items in every prefix
of the top-k ranking is above a minimum threshold, and propose a
slotwise reranking algorithm. Celis et al. (2018) propose a constrained
maximum weight matching algorithm for ranking a set of items efficiently
under a fairness constraint indicating the maximum number of items
with each sensitive attribute allowed in the top positions.

For exposure-based fairness definitions, post-processing solutions
output a probabilistic ranking distribution that minimizes unfairness in
expectation and from which a ranking can be sampled at presentation
time, or define an update mechanism to output rankings sequentially
that minimizes unfairness in an amortized fashion. Singh and Joachims
(2018) propose a linear programming (LP) based framework to frame
the problem of producing rankings that optimize user utility while sat-
isfying an exposure-based fairness constraint. They show how the linear
program, given a set of (predicted) relevances and group assignments as
inputs, outputs a distribution over rankings represented as a marginal
rank distribution, and also show how a ranking can be sampled from
such a distribution at presentation time. On the other hand, Biega
et al. (2018) frame the problem of satisfying their proportionality-based
individual fairness constraint over a sequence of ranking by framing it
as an integer linear program. More recent works also propose methods
that fuse multiple rankings into a single final ranking based on the
scores of each document (Cachel and Rundensteiner, 2024).

Due to the simplicity of incorporating reranking methods into real-
world systems, some adaptations of the methods above have been
published for job recommendation systems (Geyik et al., 2019) and
music recommendation (Mehrotra et al., 2018).

Limitations of Post-processing Methods. Post-processing meth-
ods give system designers the ability to directly optimize for the ranking
fairness constraint or metric, and they are often the easiest to implement
in a real-world system without the need to modify other components.
However, such methods suffer from a few limitations. A re-ranking
method may only ensure fairness to the extent feasible given the out-
come of the previous stages for two reasons – first, the number of
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candidates during reranking is limited, e.g., if the number of items from
underrepresented groups is very small, the fairness constraint might
be unsatisfiable; second, these methods cannot overcome unfairness in
the representation and relevance prediction of the existing candidates,
for example, the linear program (LP) solution by Singh and Joachims
(2018) relies on the knowledge of item relevances to set up the LP, and
in practice, these relevances are predicted by a model that may have its
own errors and biases. Hence, in-processing techniques are better suited
to ensure that the model can also generalize to the task of generating
fair rankings when presented with novel queries.

5.6 Granularity: Single Ranking vs. Amortized Fairness

Fairness can be defined and enforced on a per-ranking level, i.e., each
ranked list can be characterized as being fair or not. However, some
notions are hard to satisfy unless we amortize the measurement over
a sequence of rankings (Biega et al., 2018), rankings for a distribution
of queries (Singh and Joachims, 2019), or rankings sampled from a
distribution (Singh and Joachims, 2018; 2019). In other words, the
fairness in the ranking can be implemented at the granularity of a single
ranking or in an amortized fashion. Certain fairness criteria such as
exposure fairness are most suited for domains where the task of ranking
the same set of candidates may be repeated over time, e.g., product
search on an e-commerce platform, music search on audio streaming
platforms, while for high-stakes applications of rankings, such as ranking
colleges or college applicants, ensuring fairness in a single ranking might
be more important. Although the single-ranking setup is more similar
to approaches related to diversification or composition-based ranking
fairness (Section 5.3.1), in a repeated ranking setting, one could use
stochastic rankings or ranking distributions to generate rankings or
consider creating a sequence of rankings one at a time (using ideas
discussed in Section 5.3.3 or directly optimizing for exposure, Diaz et
al. 2020; Wu et al. 2022a).
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5.7 Timescale: Point-in-time vs. Dynamic Fairness

Most existing fairness notions we have discussed so far assume that
all decisions are made at a single point in time, and do not account
for the system (the model) and the external environment (e.g., users)
may adapt to the decisions over time. Most search and recommendation
systems rely on the user’s implicit and explicit feedback to improve the
models over time and are a part of a continuous feedback loop. These
feedback loops may cause the current state of unfairness in the system
to amplify or diminish over time, but this highly depends on how the
system handles unfairness at a given instance.

Chaney et al. (2018) use simulations to demonstrate how using
human feedback data confounded by the recommendations of the sys-
tem in the past homogenizes user behavior without increasing utility.
This homogenization of user behavior may have serious implications in
terms of provider fairness and the long-term diversity of the content
on the platform. A similar homogenization result was also shown by
Hashimoto et al. (2018) in general empirical risk minimization (ERM)
based approaches for supervised learning. Some recent research has
started focusing on aspects of feedback loops through the lens of online
learning where the goal is to update a ranking model as the model
acquires more data with time, along with mitigating any amplification
of unfairness (in other words, ensuring that unfairness reduces with
time as the system improves the utility of the system for the user).
Morik et al. (2020) use a controller-based approach to ensure that the
amount of unfairness and utility can be balanced over time, by defining
the ranking σ at time step τ using an accumulated error as a correction
term:

στ = arg sortd∈D
(
R̂(d|q) + λerrτ (d|σ1, . . . , στ−1)

)
where the parameter λ controls how much correction is applied to the
predicted relevances before sorting, rather than simply sorting based on
predicted relevances to get a ranking. A linear controller of this form
ensures that the unfairness converges to zero over time, and the rate is
determined by the choice of λ.
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Similarly, Yang and Ai (2021) propose a sequential item selection
approach to construct the ranking by sampling either the most relevant
item d̃k

t (based on predicted relevance) or the item with the lowest
utility-merit ratio d

k
t that provides the highest increase in marginal

fairness. They use a trade-off parameter λ to pick between the two
items.

dk
t ∼

(
λd̃k

t + (1 − λ)dk
t

)
where dk

t is the item selected for the kth position of the ranking at time
step t.

In summary, feedback loops may cause unfairness in a ranking
system to amplify over time, and point-in-time fairness methods may
lead to either suboptimal utility fairness trade-offs or be inefficient in
practice. Hence, a fairness-aware system should be able to identify and
control this unfairness over time.

5.8 Evaluation and Challenges

To coordinate efforts towards defining and solving for fairness in various
domains, it is important that the research community identifies a set
of benchmarks where various methods can be compared. Evaluating a
given ranking algorithm depends on the choice of the utility function,
notion of relevance, or merit, and requires the knowledge of the true
relevance/merit for each document under each query in the evaluation
set. This assumption is often significant. Despite the existence of datasets
with human-annotated relevance judgments, evaluating fairness criteria
in real-world systems remains challenging when relying on implicit
feedback (e.g., clicks) rather than explicit relevance labels. We discuss
challenges arising due to the gap between implicit and explicit feedback
in the next section. For now, we will focus on offline datasets that allow
us to compare the efficacy of various algorithms on different fairness
metrics.

Datasets and Evaluation Benchmarks Public benchmarks and data-
sets are crucial in making progress in developing methods that ensure
ranking fairness. The TREC Fair Ranking track provides datasets for
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provider fairness in search rankings. So far, the track has used academic
search (2019-2020) and Wikipedia article search (2021-2022) as the two
domains where the fairness of exposure to documents from different
groups is considered Biega et al. (2019). Fair Search tool (Zehlike et al.,
2020) is an open-source tool that implements both DELTR (as an in-
processing method) and FA∗IR as a post-processing approach. Table 5.5
lists a few other datasets with user-item interaction data that can be
used to study a variety of fairness metrics for ranking algorithms. For
each dataset, the most relevant attributes with respect to user fairness
or provider fairness are provided in the table. However, note that the
actual fairness concern based on the choice of attribute will need to be
carefully analyzed before one starts to implement mitigation strategies.

Table 5.5: Datasets for evaluation of fairness. References for each of the datasets
can be found in Wang et al. (2023b).

Dataset Fairness related
user attributes

Fairness related
item attributes

#Users #Items #Interactions

Airbnb gender-of-host - 10,201
Amazon activity∗, gender categories, gender-

of-model
20.9M 5.9M 143.6M

Ciao - popularity* 12.3K 106K 484K
CtripFlight - airline 3.8K 6K 25.1K
Flixter - popularity 1M 49K 8.2M
Google Local - business 4.5M 3.1M 11.4M
Insurance - gender, marital sta-

tus, occupation
1.2K 21 5.3K

Last.FM1K gender, age - 992 177K 904.6K
Last.FM360K gender, age - 359.3K 160.1K 17.5M
ModCloth bodyshape product size 44.7K 1K 99.8K
Movielens100K - popularity*,

provider, yearof-
movie

1K 1.7K 100K

Movielens1M gender, age, occupa-
tion

genres, popularity* 6K 3.7K 1M

Movielens20M - productcompany,
genres

138K 27K 20M

Xing premium/standard
membership,
education-degree,
working-country

1.4M 1.3M 8.1M

Yelp - food-genres 2.1M 160.5K 8.6M
KGRec - music 5.1K 8.6K 751.5K

In the next section, we will further discuss the challenges in eval-
uating the fairness criteria discussed in this section on user feedback
data in real-world systems, as well as suggest some ways to tackle those
challenges to effectively learn fair and unbiased ranking systems.



6
Evaluation and Training in Biased User Feedback

User feedback is an essential part of the training and evaluation of
modern IR systems. However, various data bias types exist in relevance
feedback, such as gender bias and position/selection bias, leading to
unfair and suboptimal learning-to-rank (LTR) algorithms. Roughly, we
will divide existing biases of relevance feedback into two categories –
explicit feedback and implicit feedback – in the ranking context.

• Explicit feedback refers to feedback provided by users, human
experts, or crowdsourcing labeling that explicitly indicates the
relevance or quality of items in a ranked list, providing manual
relevance judgments, to name a few: binary/continuous ratings,
like/dislike, comments and reviews, etc.

• Implicit feedback refers to feedback signals or indicators that are
passively generated from user interactions with items or content in
a ranked list, enabling noisy yet rich user behaviors to reflect the
user preferences. Some representative implicit feedback includes
click-through rate (CTR), dwell time, purchase history, scroll
patterns, etc.

This section will first give a comprehensive review of explicit/implicit
data biases existing in relevance feedback, then introduce learning with
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biased feedback from different views, and finally discuss the ranking
evaluation with biased relevance judgment.

6.1 Bias in Explicit Feedback

The bias in explicit feedback generally stems from the presence of
systematic and unfair biases in the feedback provided by users or
human assessors to assess the relevance of a ranked list given by a
search system. This bias could be subjective and consciously induced by
assessors (Azzopardi, 2021; Gomroki et al., 2023) due to demographic
discrepancy and biased queries/documents (Bigdeli et al., 2021b; Krieg
et al., 2022b; Krieg et al., 2023), and caused by more generalized
societal bias, which has a significantly negative impact on the training
and evaluation of ranking models, leading to distorted results and unfair
rankings. We investigate the explicit data bias existing in the feedback
collection from the following aspects.

As discussed in Section 1.3, cognitive bias denotes a systematic
pattern of deviations in thinking that may lead to errors in judgments
and decision-making (Tversky and Kahneman, 1974; Tversky and Kah-
neman, 1992), which inevitably impacts user feedback and relevance
judgments (Azzopardi, 2021; Gomroki et al., 2023). Azzopardi (2021)
investigated an array of cognitive biases, including too much informa-
tion, no meaning, act fast, and remember, across different domains and
stages in a search pipeline. Particularly, this work broadly discussed the
impact of cognitive biases on human assessors when collecting relevance
judgments. We highlight several key biases as follows.

• Domain bias (May et al., 2019) – assessors tend to value more
well-known websites/documents.

• Ambiguity bias (Eickhoff, 2018) – assessors rate detailed and com-
plete documents more than incomplete ones (e.g., those missing a
title or figures).

• Priming effects (Scholer et al., 2013; Shokouhi et al., 2015) –
priming assessors would give higher ratings if low-relevance items
were given in an early stage.
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Plus, Gomroki et al. (2023) provided a mixed-method approach of data
collection from 25 specialists and 30 post-graduate students to study
the cognitive bias intrinsic to each step in a search system.

Gender bias is one of the most common social biases that may incur
stereotypes and unfair treatment. It has been well studied in broad
IR-relevant contexts, for example, unbiased LTR, document/query rep-
resentations, fair ranking, recommendation, etc., and also appears in
explicit relevance judgments. For example, Bigdeli et al. (2021b) ex-
plored gender bias existing in gold standard IR relevance judgment
datasets through psychological processes, which first employed a BERT-
based classifier to predict gender types of queries and then quantified
the bias in relevance judgment documents of each gendered query with
psychological characteristics. Similarly, Krieg et al. (2022b) designed and
developed a relevance judgment task through the crowdsourcing plat-
form – Amazon Mechanical Turk (MTurk) – to empirically investigate
how gender-sensitive queries receive different relevance judgments across
annotators. Krieg et al. (2023) built the Gender Representation-Bias for
Information Retrieval (Grep-BiasIR) dataset, consisting of 118 gender-
sensitive queries and 708 documents, which provides a comprehensive
test bed over 7 gender-related stereotypical topics.

6.2 Bias in Implicit Feedback

Implicit user feedback has been studied for a long time in search and
ranking systems, enabling an effective and efficient way to obtain rele-
vance judgments, especially for large-scale ranking models, user person-
alization, and real-world applications. Typical implicit feedback could
directly capture rich user behaviors, such as click-through rate (CTR),
dwell time, purchase history, and scroll patterns; however, it may also
suffer from various data biases and thus give skewed relevance judgments
due to non-uniform exposures, time drifts, data noise, etc. The bias in
implicit user feedback can reinforce and accumulate unfair user/item
treatments and lead to skewed exposures in a ranking list, such as
biased user clicks (Joachims et al., 2017b), unfair exposures (Singh and
Joachims, 2018), inequality of user attentions (Biega et al., 2018), etc,
exacerbating biased rankings across items and demographic groups.
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Position bias (Joachims et al., 2005; Agarwal et al., 2019d; Yadav
et al., 2019) occurs in ranked lists, where items displayed in higher
positions or in a particular order attract more user clicks and attention,
regardless of their actual relevance or quality. This bias will lead to
a biased position effect and distort implicit feedback data collected
from user feedback, since the top items in a given rank list receive a
disproportionate number of user interactions, including clicks, views, and
engagement. Without proper mitigation, position bias may prioritize
items based on their positions instead of the true relevance (Joachims et
al., 2005). Pioneeringly, Wang et al. (2016) and Joachims et al. (2017b)
proposed feedback propensity models accounting for item positions and
click noises to achieve unbiased LTR with biased implicit feedback.

Presentation bias (Yue et al., 2010) measures the biased relevance
judgment due to attractive document summaries rather than the actual
content, such as bolded terms in titles, URLs, and query snippets. Yue
et al. (2010) first showed this presentation bias (title attractiveness)
exists in human-rated evaluation, even in the absence of position bias.

Selection bias (Wang et al., 2016; Ovaisi et al., 2020) stems from the
under-sampled query (click) data that drifts from the true underlying
data distribution, where the relevant items cannot be fully rendered to
users. This is mainly because of the truncated list of top recommended
items chosen by systems or the lower-ranked relevant items (position
bias) that users could easily overlook (Ovaisi et al., 2020). An empirical
study on selection bias on explicit relevance judgment is provided
in Minka and Robertson (2008). Differently, Wang et al. (2016) studied
the selection bias of user clicks in personal search and introduced a
new empirical loss accounting for the selection bias based on inverse
propensity weighting. Ovaisi et al. (2020) further corrected selection
bias in LTR systems thorough Heckman’s two-stage method.

Trust bias (Joachims et al., 2005; Agarwal et al., 2019c) amplifies the
negative impact of position bias, overestimating/underestimating the im-
plicit relevance feedback (e.g., click-through data) given by higher/lower
ranked results, due to users’ trust in higher-ranked items given by search
applications (Agarwal et al., 2019c). This term was first adopted for
implicit feedback in Joachims et al. (2005), validated by user evalua-
tions. Agarwal et al. (2019c) modeled the noise between the perceived
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relevance and true relevance as a position-dependent trust bias and
estimated this bias using a noise-aware position-based model (PBM)
via an EM algorithm. Ren et al. (2022) introduced a new pairwise trust
bias to disentangle position bias, trust bias, and relevance judgment,
applicable to both categorical and continuous user feedback.

6.3 Learning with Biased Feedback

Biased user feedback usually leads to poor ranking quality and enlarges
the unfair item exposures (Morik et al., 2020; Singh and Joachims,
2018; Biega et al., 2018), regardless of the true relevance distribution,
increasingly alienating underrepresented groups. It is thus of imminent
importance to develop fair ranking algorithms with biased feedback. This
section will introduce bias mitigation methods and unbiased learning-
to-rank models from the following three aspects.

6.3.1 User Click Models

Click models (Chuklin et al., 2015) have been well explored in IR
systems to capture user interactions with search engines and describe
user behaviors (i.e., clicks) as implicit relevance feedback, among which,
the position-based click models (Richardson et al., 2007; Craswell et al.,
2008a; Dupret and Piwowarski, 2008; Chapelle and Zhang, 2009) are
widely used to realize unbiased LTR by considering the position bias
(and its variants) – the likelihood of a user examining a search result
decreases as the ranking position gets lower. Two representative click
models include the position-based model (PBM) (Richardson et al.,
2007) and the cascade click model (Dupret and Piwowarski, 2008). We
briefly review the basics of PBM and CM in the following.

Given a query q and its N ranked documents {d1, . . . , dN }, we denote
di as the document displayed at the i-th position, 1 ≤ i ≤ N . For each
position i, let Ci be a binary random variable indicating whether a
user clicks (Ci = 1) or skips (Ci = 0) the document di, Ei whether a
user examines this document and Ri whether this document is truly
relevant. Most click models are probabilistic generative models that
parameterize and optimize the joint distribution P (C1, . . . , CN ), and
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follow the examination hypothesis – a document di is clicked (Ci = 1)
if, and only if, it is examined (Ei = 1) and relevant (Ri = 1). The
examination and relevance random variables (E and R) are generally
assumed to be independent.

Position-Based Models

Position-Based Model (PBM) combines the examination hypothesis and
position bias and introduces a group of result-dependent parameters
αq,di

to represent the relevance of di to the given query q. Accounting
for positions, PBM adopts another group of parameters βi to represent
the examination probability at each rank position. To be specific, PBM
formulates the probability of a user click as

P (Ri = 1|q, di) = αq,di
, P (Ei = 1) = βi,

P (Ci = 1|q, di) = P (Ri = 1|q, di)P (Ei = 1) = αq,di
βi.

(6.1)

where Ri is the relevance of di with respect to qi, Ci is the click on di,
and Ei is whether di was examined by the user.

User Browsing Model (UBM) (Chapelle and Zhang, 2009) extends
PBM to reformulate the examination probability, conditioning on a
previously clicked position in addition to position bias. UBM considers
P (Ei = 1|C1, . . . , Ci−1) by assuming the document di will be examined
not only according to its position i but also its nearest previous clicked,
e.g., Cj = 1, 0 ≤ j < i. Thus, UBM rewrites PBM by

P (Ri = 1|q, di) = αq,di
, P (Ei = 1|C1, . . . , Ci−1) = βij ,

P (Ci = 1|q, di) = P (Ri = 1|q, di)P (Ei = 1|C1, . . . , Ci−1)
= αq,di

βij ,

(6.2)

where j = max{k ∈ {0, . . . , i − 1}|Ck = 1} and the pseudo document
d0 is always clicked (C0 = 1).

More recently, a TrustPMB (Agarwal et al., 2019c) model is proposed
to further incorporate trust bias into the PBM formulation by modeling
the noise between true and perceived relevance.
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Cascade Click Models

Cascade click models (Dupret and Piwowarski, 2008; Chapelle and
Zhang, 2009) are another category of click models that assume users scan
documents from top to bottom until finding a relevant one, resulting in
a cascade hypothesis as P (E1) = 1 and P (Ei = 1|Ei−1 = 0) = 0, ∀i > 1
and the click probability as P (Ci = 1) = ri

∏i−1
j=1(1 − rj), where ri/rj

denotes the probabilities that document di/dj is relevant. Prominent
cascade click models include dependent click model (DCM) (Guo et al.,
2009b), click chain model (CCM) (Guo et al., 2009a), and dynamic
Bayesian network model (DBN) (Chapelle and Zhang, 2009), which
all extend the cascade model (Dupret and Piwowarski, 2008) to han-
dle multiple clicks in query sessions yet mainly differ in probabilistic
formulations of examinations.

Dependent Click Model (DCM) (Guo et al., 2009b) assumes the user
would continue to examine the subsequent documents with a probability
λ, and revise the cascade constraint as

P (Ri = 1|q, di) = αq,di
,

P (E1 = 1) = 1, P (Ei = 1|Ei−1 = 0) = 0,

P (Ei = 1|Ci−1 = 1) = λi,

P (Ei = 1|Ei−1 = 1, Ci−1 = 0) = 1.

(6.3)

Dynamic Bayesian Network (DBN) (Chapelle and Zhang, 2009)
further introduces a random satisfactory variable Si to indicate whether
a user is satisfied by the clicked document, enabling the model capacity
to capture the difference between perceived relevance (assessed by users)
and the actual relevance. Formally, DBN is given by

P (Ri = 1|q, di) = αq,di
,

P (E1 = 1) = 1, P (Ei = 1|Ei−1 = 0) = 0,

P (Si = 1|Ci = 1) = δq,di
,

P (Ei = 1|Si−1 = 1) = 0,

P (Ei = 1|Ei−1 = 1, Si−1 = 0) = γ.

(6.4)

where γ measures the probability of a user examining the next document
if the current result is not satisfied.
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User click models serve as one of the foundations to develop unbiased
LTR algorithms (Ai et al., 2018), also enable applying unbiased LTR
for fair ranking problems (Morik et al., 2020; Yadav et al., 2019). More
theoretical and piratical details about using click models could be
referred to in Ai et al. (2018).

6.3.2 Counterfactual Learning Methods

Inverse Propensity Scoring (IPS) (Wang et al., 2016; Joachims et al.,
2017b), as well known as Inverse Propensity Weighting (IPW), first
adopts a counterfactual treatment for the user click bias by re-weighting
the training loss (empirical risk) through IPS estimates, formulating a
landmark for optimizing unbiased LTR with implicit feedback. Let xi

be a ranking score given by a prediction model f(di, q), where q and di

refer to the query and the i-th document, ci be the user click, and πq

be a presented ranking list. The IPS weighting loss is given by

ℓIP S(f, q) =
∑

xi∈πq ,ci=1

∆(xi, ci|πq)
P (oi|πq) , (6.5)

where ∆(xi, ci|πq) computes individual ranking loss per document and
oi denotes a binary random variable indicating whether di is observed in
the given rank list (logging policy) πq. Joachims et al. (2017b) proofed
the IPS weighted loss as an unbiased estimate of the loss with true
relevance and provided a PBM-based IPS estimator accounting for
the position bias. Agarwal et al. (2019a) further developed a more
general IPS framework with theoretical guarantees by covering more
ranking risks/metrics and optimizing neural networks. Building on top
of (Wang et al., 2016; Joachims et al., 2017b), a series of counterfactual
IPS estimation methods have been developed for correcting selection
bias (Ovaisi et al., 2020; Oosterhuis and Rijke, 2020), addressing trust
bias (Agarwal et al., 2019c; Vardasbi et al., 2020), mitigating contextual
bias (Fang et al., 2019; Chen et al., 2021), etc.

Despite the unbiasedness of propensity-based methods, they may
suffer from a high variance issue (Saito, 2020a; Vardasbi et al., 2020;
Wang et al., 2021b; Oosterhuis, 2022), potentially due to the irrelevant
treatment of non-clicked (displayed) items (Wang et al., 2021b) and the
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fact that the inverse values of the propensities could be large (Saito,
2020a). Toward low-variance IPS estimations, Vardasbi et al. (2020)
applied affine transformation in modeling relevance probability, which
not only re-weights the clicks but also penalizes incorrect clicks. For
another example, Wang et al. (2021b) introduced a ratio-propensity-
scoring (RPS) estimator that assigns weights to pairs of clicked and
non-clicked items based on the ratio between their propensities, serving
as a biased estimation yet with low variance.

Doubly Robust Estimation. Doubly-Robust (DR) methods have been
widely used in modeling position-biased clicks (Saito, 2020b; Guo et al.,
2021; Kiyohara et al., 2022; Zou et al., 2022b). Saito (2020b) introduced
a DR method tailored for post-click conversions, followed by a more
robust DR estimator (Guo et al., 2021) to reduce variance and a cascade
DR estimator (Kiyohara et al., 2022) specifically designed for off-policy
evaluation in ranking and search systems. Zou et al. (2022b) leveraged
DR for relevance estimation by combining low-variance imputation
based on large language models and low-bias IPS estimations.

One main obstacle to applying DR in unbiased LTR is the lack of
large actual treatments – user examination, which is also one of the main
issues in previous IPS approaches since the examine variables (Wang et
al., 2016; Joachims et al., 2017b) are not observed in click log history. It
would be unclear whether a non-click item was intentionally skipped or
not examined by users. To this end, Luo et al. (2023) trained a context-
aware user simulator with LSTMs to generate pseudo-click labels for
unobserved ranking lists. The generated clicked data are incorporated
into IPS estimations governed by a doubly robust learning framework,
pursuing low-bias and low-variance propensity estimation. Unlike using
a neural network-based imputation model (Luo et al., 2023), Oosterhuis
(2023) approximated the lacking actual treatment by constructing a
covariate with the expectation of treatment per rank and developed a
novel DR estimator by jointly optimizing a preference regression model
with IPS estimation, resulting in a more robust theoretical guarantee
for unbiasedness.
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6.3.3 Model-based Methods

Two-Tower Models for learning from biased feedback (Zhao et al.,
2019b; Guo et al., 2019; Zhuang et al., 2021; Yan et al., 2022; Zhang
et al., 2023) consist of a relevance tower and an observation tower,
where the relevance tower model takes regular input features to predict
unbiased relevance, while the observation tower captures the biased-
related features inherent in user behaviors (clicks), such as positions
and platform (e.g., mobile vs desktop), to estimate non-uniform user
observation probability over ranking items. Generally, this kind of
method follows the same assumption of PBM models, assuming the
relevance prediction and observation probability could be completely
factorized, and thus resulting in the popular two-tower additive model
architecture (Zhao et al., 2019b; Guo et al., 2019; Zhuang et al., 2021).
However, recent methods (Yan et al., 2022; Zhang et al., 2023) argue
that the independent assumption between relevance and user bias
might be too strong in real-world applications. To this end, Yan et al.
(2022) discussed the limitation of using the additive model to capture
user behaviors and enriched user modeling by providing a mixture of
EM algorithm and embedding-based interaction. Zhang et al. (2023)
theoretically showed the confounding effect between relevance and bias
models and developed two disentangle methods through gradient reversal
and observation dropout.

Neural User Models (Borisov et al., 2016; Zhang et al., 2019; Dai
et al., 2020; Luo et al., 2023) seek to predict user behaviors with deep
neural networks, which could simulate user data (clicks) and also enrich
observations from different ranking lists. Unlike generative click models
(Section 6.3.1), which mainly adopt the probabilistic graphical model
framework and parameterize user behavior as a sequence of observ-
able and hidden events, the neural click models (Borisov et al., 2016;
Borisov et al., 2018) reduce hand-crafted designs and learn to predict
user behavior in a data-driven approach, such as training RNNs to
represent user clicks with hidden states (Borisov et al., 2016) and adopt-
ing an encoder-decoder network to predict user interaction per query
session (Borisov et al., 2018). Recently, Zhang et al. (2019) developed a
context-aware user (click) model to enable a virtual environment for
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learning ranking policies via a reinforcement learning framework. Dai
et al. (2020) trained a deep CTR model to generate counterfactual data
for unbiased estimation.

6.4 Evaluation with Biased Relevance Judgments

Accurately evaluating new ranking policy is essential to a wide range
of online web search services (Li et al., 2015; Schnabel et al., 2016;
Agarwal et al., 2017; Li et al., 2018). Despite various biases existing
in user log data (e.g., click, dwell time, etc.), this biased user feedback
could provide an inexpensive and fast alternative to unbiased online
A/B tests. This section will mainly focus on investigating evaluation
with implicit feedback, and further discuss its application in incomplete
judgments and fair ranking problems.

6.4.1 Off-policy Evaluation

One mainstream method to perform offline evaluation with implicit
feedback is off-policy evaluation (OPE) (Gilotte et al., 2018; Saito and
Joachims, 2021; Saito and Joachims, 2022), which aims to realize accu-
rate ranking performance evaluation only using logged data, yet without
actual user interactions. A great deal of counterfactual evaluation tech-
niques (Bottou et al., 2013; Li et al., 2015; Swaminathan and Joachims,
2015a) have been developed to implement OPE in a ranking context and
to mitigate the distribution shifts between different policies, including
model-free estimators, model-based estimators, and the hybrid ones.

Model-Free OPE. The inverse propensity scoring (IPS) estima-
tor (Precup et al., 2000; Strehl et al., 2010; Swaminathan and Joachims,
2015a) forms the standard OPE technique to evaluate rankings (actions)
in contextual bandit processes, where the user log data is formulated
as contextual bandit feedback from a logging policy. The IPS-based
methods generally adopt the importance sampling technique to correct
the distribution shift between the offline policy and the new online one.
The IPS estimator is theoretically guaranteed to be unbiased through
two general assumptions of common support and unconfoundedness in
causal inference, yet it could be highly vulnerable in large action space
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– suffering from high variance. To this end, some advanced IPS variants
have been proposed to lower the variance while keeping the unbiased
estimation, such as Clipped IPS (Swaminathan and Joachims, 2015a)
and Self-Normalized IPS (Swaminathan and Joachims, 2015b), both
of which shrink the large IPS weights to balance the bias and variance
given in the MSE error. Agarwal et al. (2017) also extended IPS to log
data obtained from multiple logging policies.

Model-Based OPE. We refer to the model-based methods as two
kinds: 1) reward regression models and 2) user behavior models. On
the one hand, the direct methods (DM) (Beygelzimer and Langford,
2009) generally optimize a reward regression model to assist policy
performance evaluation. While the DM approaches enjoy low variance,
they could be highly biased due to less accurate award predictions
and model mis-specification (Dudík et al., 2011; Jiang and Li, 2016).
On the other hand, different assumptions have been imposed on user
behavior models to address the high variance issue of IPS methods,
such as the Independent IPS (IIPS) estimator (Li et al., 2018) and the
Reward Interaction IPS (RIIPS) (McInerney et al., 2020) estimator,
where IIPS implements a new position-level weighted reward function
based on the combinatorial action formulation, assuming independent
user interactions across positions, and RIIPS adopts a cascade user
model – assuming sequential user interactions from top positions to the
bottom ones. More recently, an adaptive IPS (AIPS) model (Kiyohara
et al., 2023) is proposed to handle diverse user model behaviors by
dynamically changing the estimator upon user contexts.

Hybrid OPE. The hybrid methods try to combine the advantages
of DM estimators (high bias yet low variance) and IPS estimators
(high variance yet low bias) within a doubly robust (DR) estimation
framework (Dudík et al., 2011; Jiang and Li, 2016; Kiyohara et al.,
2023), which could largely reduce the variance of IPS and remain
unbiased. However, the DR estimator, in essence, may still suffer from
a high variance issue, especially when it comes to use in a large action
space (Saito and Joachims, 2022). To this end, variants of DR (Wang et
al., 2017; Su et al., 2019; Su et al., 2020b) have been proposed to achieve
better bias-variance control by adjusting the importance weights in the
conventional DM-based formulation by, e.g., adaptive weighting (Su
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et al., 2019) and carefully hyperparameter turning (Wang et al., 2017; Su
et al., 2020b). Kiyohara et al. (2022) further incorporated the cascade
user model assumption into the DR estimator toward further reducing
the variance.

6.4.2 Evaluation with Incomplete Judgments

Convention ranking evaluation follows the Cranfield paradigm (Voorhees,
2002) and employs the complete judgment – the relevance label of every
ranked document and the collected document is known. However, it
would be more practical to apply unbiased incomplete judgments for
evaluation, as annotating all the documents is infeasible and expensive
in large-scale search systems (Buckley and Voorhees, 2004; Büttcher
et al., 2007). To realize evaluation with incomplete judgments, statisti-
cal sampling (Aslam et al., 2006; Yilmaz and Aslam, 2006; Aslam and
Yilmaz, 2007) and selection methods (e.g., random selection or top-k
pooling (Büttcher et al., 2007)) are two commonly used techniques. Re-
garding the fairness of ranking, Kırnap et al. (2021) recently investigated
the impact of incomplete judgments on a series of fair ranking met-
rics, including both proportion-based (i.e., statistical parity) (Yang and
Stoyanovich, 2017; Zehlike et al., 2017) and exposure-based (Singh and
Joachims, 2018; Biega et al., 2018) fairness measurements, to alleviate
the data-starving and privacy-preserved challenges of labeling attributes
in practice. Robust and unbiased estimations were provided to calculate
fairness metrics with incomplete judgments based on sampling strategy
and the Horvitz-Thompson estimator.

6.4.3 Fair Ranking from Implicit Feedback

Previous fair ranking methods mainly rely on manual relevance judg-
ments for ranking policy training and evaluation (Biega et al., 2018;
Singh and Joachims, 2018; Zehlike and Castillo, 2020; Singh and
Joachims, 2019), which, however, it is challenging to scale up to large-
scale search systems due to the data-starving and privacy challenges.
Plus, it has been well recognized that implicit user feedback (e.g., click-
through data) could more closely capture user behavior, thus enabling
more practical ranking fairness adhering to real-world applications. In
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light of this, recent research efforts (Morik et al., 2020; Yadav et al.,
2021) have been made in learning fair ranking policy with user click data
by solving two main challenges: first, how to incorporate fair constraints
into relevance (utility) ranking objectives without using true relevance
labels, and second, how to leverage the biased (e.g., position bias) and
partial (e.g., user clicks of unexamined items are unknown) implicit
user feedback to achieve unbiased relevance and policy estimations.

Morik et al. (2020) proposed to simultaneously control bias and
fairness within a two-step framework: an unbiased relevance estimator
is learned from biased click data first, and the amortized group fairness
is then imposed on the learned ranking policy. Following this pioneering
work, Yadav et al. (2021) further developed a policy-gradient training
algorithm to utilize the IPS estimator to learn a better trade-off between
fairness and utility from biased user click data. Besides the implicit
feedback, several de-biasing techniques have also been explored recently
to mitigate the social bias in explicit relevance feedback for fair ranking,
such as using data augmentation (Bigdeli et al., 2023) and the label-free
distribution-based learning (Chen and Fang, 2023).

6.5 Limitations of Evaluating Fairness

Various evaluation metrics have been proposed to measure the fairness
of ranking in search systems (Pitoura et al., 2021; Raj and Ekstrand,
2022). We have demonstrated the details of several commonly used fair
ranking metrics in terms of composition, accuracy, and opportunity-
based methods (see Table 5.2). In this section, we briefly review the
recent works focusing on fair ranking metrics and discuss the potential
limitations of fair ranking evaluation.

6.5.1 Fair Ranking Metrics Revisit

Following the definition of fairness in classification, Pitoura et al. (2021)
summarized an overall taxonomy to specify fair ranking metrics in
different levels (individual fairness vs. group fairness), sides (user vs.
item), and output multiplicity (single ranking or multiple rankings),
which provide a comprehensive understanding of fair ranking and rec-
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ommendation toward various aspects of the systems. More recently,
Raj and Ekstrand (2022) provided more fine-grained discussions on
measuring the fairness of ranking results in the following three aspects:

• Statistical parity in single rankings only accesses the exposure
equity without measuring the ranking utility – relevance scores,
which thus does not require true relevance labels for computing
fairness scores. Some representative metrics include prefix fairness
(PreF∆) (Yang and Stoyanovich, 2017), FAIR (Zehlike et al., 2017),
and attention-weighted rank fairness (AWRF∆) (Sapiezynski et
al., 2019), where ∆ denotes different distance functions. PreF∆
computes statistical parity with position bias by averaging parity
over successive prefixes of a ranking list, and FAIR calculates a
similarity-based group fairness score based on the top-k positions.
AWRF∆ introduces a position weight model into the fairness
metric to better address user behaviors explicitly.

• Statistical parity in multiple rankings extends single-ranking eval-
uation to multiple sequences or distributions of rankings, which is
used to evaluate the query-dependent stochastic ranking policy,
such as demographic parity (DP) (Singh and Joachims, 2018) and
expected exposure disparity (EED) (Diaz et al., 2020). Both DP
and EED measure the statistical parity over ranking policies and
expect an equal exposure between protected and dominant groups,
where DP adopts the ℓ2 norm to calculate the exposure ratio,
and EED captures the inequality in exposure distribution across
groups (Raj and Ekstrand, 2022).

• Equal opportunity in multiple rankings consider fairness condition-
ing on ranking utility – the exposure should be proportional to
relevance (Singh and Joachims, 2018; Biega et al., 2018; Raj and
Ekstrand, 2022). Similar to equality of opportunity in classifica-
tion (Hardt et al., 2016), Singh and Joachims (2018) developed
exposed utility ratio (EUR) and realized utility ratio (RUR) to
incorporate rank utility into group fairness exposure. On another
hand, the inequity of amortized attention (IAA) metric (Biega
et al., 2018) and expected exposure loss (EEL) (Diaz et al., 2020)
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have been designed for individual fairness exposure over stochastic
ranking policies. Please refer to Section 5.3 for more details about
the above equal opportunity metrics.

Raj and Ekstrand (2022) has provided a detailed empirical compari-
son among the above fair ranking metrics on the TREC Fair Ranking
Track 2020 dataset (Biega et al., 2020b). A different perspective is
proposed by Gao et al. (2022) by combining traditional IR metrics
(which are used for assessing relevance) with fairness metrics. More
recently, Ratz et al. (2024) introduced a new evaluation metric for com-
parative search result bias based on skewness. Abolghasemi et al. (2024)
developed an attention-weighted rank fairness evaluation framework
over the previous fair ranking metrics (Rekabsaz et al., 2021; Rekab-
saz and Schedl, 2020) to access gender bias through the term-based
representation of groups in a ranked list.

6.5.2 Open Challenges in Fair Ranking Evaluation

The lack of evaluation benchmarks and tools. While the fairness-aware
methods have flourished in recent years, the development of benchmark
datasets and evaluation tools fall short in attracting more research
efforts, especially for the fair ranking problem, which is often evalu-
ated on synthetic data rather than large-scale real data (Pitoura et al.,
2021; Raj and Ekstrand, 2022; Zehlike et al., 2022). To the best of
our knowledge, the TREC Fair Ranking Track (Biega et al., 2020b) is
the largest public dataset to evaluate the fairness of search systems
in ranking documents. Since 2019, the fair tack of TREC has focused
on searching relevant academic abstracts from authors belonging to
different groups in Semantic Scholar and Wikimedia corpus. However,
the type of protected attributes and multi-level attributes are still
under-explored. Plus, the evaluation of real-world fair ranking applica-
tions (Geyik et al., 2019) is usually inaccessible due to the data privacy
issue and the lack of standard access protocols. More evaluation tools,
such as FairSearch (Zehlike et al., 2020), IBM’s AI Fairness 360, and
TensorFlow’s Fairness Indicators, are also needed.

The role of relevance feedback. The fair evaluation metrics are gen-
erally computed upon manually annotated relevance labels (explicit
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feedback), which are expensive to collect and may suffer from cognitive
and social bias from assessors. It would be helpful to adopt implicit
feedback (e.g., click data) to evaluate ranking fairness, since these user
data could largely reduce the acquisition cost and closely describe user
behaviors. Balagopalan et al. (2023) thoroughly studied the role of rele-
vance in fair ranking and showed it as a good proxy for worthiness in fair
exposure allocation by providing five validation criteria. The empirical
study of click-based relevance in (Balagopalan et al., 2023) casts a new
direction of using relevance implicit user feedback in accessing fairness.

Audit the fairness of LLM rankers. Large language models (LLMs)
based rankers (Sun et al., 2023; Qin et al., 2023; Ma et al., 2023) have
grown rapidly, which generally leverage the generalization and reasoning
ability of LLMs to directly “answer” the relevant documents given the
query and prompts. However, since the reliability study of large models
remains far from mature, there is an urgent need to investigate fair
ranking evaluations accounting for the overlarge model size and black-
box nature of LLMs. Particularly, how the human-like bias (Ferrara,
2023; Schramowski et al., 2022), misinformation (Nozza et al., 2022),
and malicious attack (Wang et al., 2023a) would impact LLM behaviors
and further disorder ranking results still needs to be clarified. Scalable
validation techniques, calibration data, and mitigation strategies should
be designed and developed to audit the fairness of LLM rankers.



7
Research Trends and Future Work

Fairness in search systems is a relatively new but rapidly growing
corner of the research literature on information retrieval, machine learn-
ing, responsible AI, and related topics. Recent fundamental research
breakthroughs at the intersection of the fields of information retrieval,
deep learning, large language models, and algorithmic fairness open up
fascinating directions for future advancements in the field of fair search.

In this section, we discuss some of these potential directions in detail.
We hope that the research presented in this section will inspire our
readers to deeply reflect on their assumptions about search and ranking,
and eventually advance the field beyond the existing paradigm of search
engines, as reflected in current production systems. While information
retrieval has a storied past and a well-established present, there is still
much that remains to be done to improve fairness in these systems.

7.1 Fairness in Production Ranking Systems

Despite a surge in academic research on developing fair algorithms,
their implementation in production search systems used by companies
and governments is less prevalent, with limited public disclosure of their
fairness strategies. There are noteworthy examples, such as LinkedIn,
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where researchers have published their implementation of a system in
LinkedIn’s recruitment platform that ensures gender-balanced results
(Geyik et al., 2019; Quiñonero Candela et al., 2023), representing a
user-oriented approach (Li et al., 2023) that aims to deliver fair results
directly to end-users. These systems typically require fast response times,
necessitating the development of more efficient fair ranking algorithms
in future work.

On the other hand, developer-oriented approaches aim to create
tools that assist developers and policymakers in the industry to better
comprehend and tackle system unfairness. Tools like IBM’s AI Fairness
360 (Bellamy et al., 2019), Microsoft’s Fairlearn (Bird et al., 2020), and
Amazon’s SageMaker Clarify (Hardt et al., 2021) exemplify this. They
provide ways to identify biases at various points in the machine learning
pipeline and offer a range of bias mitigation techniques. Practitioners
at Google have also implemented specific fairness metrics in a produc-
tion ranking system (Beutel et al., 2019b). Such developer-oriented
systems often balance multiple objectives, making it challenging to
ensure fairness across all aspects of the model and final ranking.

In the realm of recommendation systems, there is notable research,
such as Spotify’s counterfactual analysis of fairness interventions, bal-
ancing user satisfaction with fair artist representation (Mehrotra et al.,
2018). Google has also demonstrated improvements in pairwise rank-
ing fairness in their large-scale recommender systems (Beutel et al.,
2019a). Moreover, there is research on enhancing fairness in broader
machine learning production systems (Bakalar et al., 2021; Madaio et
al., 2022; Quiñonero Candela et al., 2023). The work highlights the gap
between practical challenges faced by commercial product teams and
academic solutions, including issues related to data collection, auditing
processes, and human biases. Their insights are equally applicable to
search production systems.

7.2 Fairness and Utility

One of the major research challenges is to define fairness and utility
in search (Li et al., 2023), largely due to the subjective and context-
dependent nature of these concepts. The notion of fairness can vary
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across cultures, societies, and individuals. What is considered fair in one
context might not be seen as such in another. In addition, search systems
serve various stakeholders (providers and consumers), each with their
own perceptions of fairness. The multifaceted nature of fairness may lead
to a series of research problems. First, current methods primarily address
a single type of fairness requirement, even though biases often manifest
in multiple forms simultaneously. Consequently, it becomes crucial to
explore a unified model that can cater to multiple fairness needs. While
achieving a one-size-fits-all solution to all fairness issues is theoretically
unattainable; as some fairness definitions are not even compatible except
in highly constrained special cases (Kleinberg et al., 2016) — it is still
valuable to explore some simpler scenarios such as handling two or three
different cases. Secondly, an important challenge arises when certain
fairness requirements conflict and cannot be achieved simultaneously.
The key issue here is how to establish a reasonable and effective trade-off.
Recent advancement in fairness research in classification (Hsu et al.,
2022) has demonstrated the potential to meet all fairness criteria with
minimal violations. Extending this approach to fair search presents an
intriguing area for research.

Similarly, defining the utility of a search system can be challenging
too (Patro et al., 2022). The fair ranking literature often employs
exposure as a surrogate for provider utility, exemplified by concepts like
fairness of exposure or equity of attention (Biega et al., 2018; Singh and
Joachims, 2018), as discussed in Section 5. These approaches typically
assume that exposure correlates directly with a provider’s ranking
position, where each position is assigned a fixed value, irrespective of
context. This ranking-based perspective on exposure might overlook
important context-specific factors. For instance, higher exposure does
not always equate to increased user attention, and even when it does,
this heightened attention does not necessarily translate into tangible
provider utility, such as sales or long-term satisfaction. An additional
critical contextual factor that extends beyond mere ranking position is
time, particularly in rapidly evolving domains like news, where items
retain relevance for only a brief period (Campos et al., 2014). In these
dynamic environments, both users and providers derive the most benefit
from immediate exposure. For instance, the timeliness of information is a
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key component of relevance in breaking news (Chakraborty et al., 2017).
Another example is that restaurants are likely to receive more orders if
they are promoted in ranking during peak hours to customers in close
proximity (Banerjee et al., 2020). How to consider all the contextual
factors and define a more suitable and realistic utility function remains
an important area for research.

Balancing fairness and utility poses a complex challenge, as im-
proving one may impact the other. Striking the right balance requires
ongoing research, development, and ethical considerations. In many
industries, businesses prioritize metrics such as purchase rates over
treating their users fairly. As a result, the motivation to promote fair-
ness is often overshadowed by the pursuit of profits, particularly when
there is a trade-off between fairness and profit metrics. However, legal
requirements in many countries, such as the GDPR in the EU1, CCPA
in the US2, and IISARR in China3, enforce fair treatment of users in
practical systems. It is crucial for the research community to exam-
ine the relationship between fairness and utility to encourage industry
practitioners to prioritize fairness. In some cases, fairness and utility
can reinforce each other. For example, a fair set of search results can
provide a more comprehensive view of a topic, enhancing utility. Some
work on classification tasks has also found that improving fairness may
improve overall accuracy (Lahoti et al., 2020). In case certain measures
of fairness and utility are inherently at odds with each other, we can
create approaches that ensure fairness with minimal impact on utility,
or ensure utility with minimal impact on fairness. These impacts can
be explained to users in a suitable manner so that they can compre-
hend and accept them, and distributed across users or time to avoid
continuously harming particular groups of users.

7.3 Data and Benchmarks

While Section 5 introduced several benchmark datasets, the availability
of data tailored for fair search research is notably limited. This scarcity

1https://gdpr.eu/
2https://oag.ca.gov/privacy/ccpa
3http://www.cac.gov.cn/2022-01/04/c_1642894606364259.htm

https://gdpr.eu/
https://oag.ca.gov/privacy/ccpa
http://www.cac.gov.cn/2022-01/04/c_1642894606364259.htm
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is partly due to the unique requirements of fairness research, which
often necessitates datasets containing user personal information, such
as gender, race, age, location, and income. Moreover, the multifaceted
nature of fairness concerns requires a diverse range of datasets, each
catering to specific aspects of fairness.

Compiling such comprehensive datasets poses significant challenges,
particularly from a legal perspective. For instance, the data minimization
principle of the GDPR restricts the collection of sensitive information
like gender or race, which could inadvertently impede the implementa-
tion of fairness interventions. Reliance on inferred attributes introduces
considerable uncertainty, potentially diminishing the effectiveness of
these interventions. Biega et al. (2020a) suggested that while data
minimization might not drastically reduce performance, it could dispro-
portionately affect different user groups.

Legal hurdles extend beyond privacy concerns to include data reten-
tion policies and intellectual property rights of platforms. To navigate
these challenges, robust anonymization of users and innovative methods
like federated learning (Kairouz et al., 2021) or differential privacy
(Dwork, 2006) can be explored for balancing privacy with fairness.
Concurrently, regulatory efforts are encouraging greater transparency
in algorithmic systems. The Federal Trade Commission’s Algorithmic
Accountability Act in the U.S., for example, mandates external con-
sultations for impact assessments, involving independent auditors and
technology experts, to ensure impartial evaluations of platform-operated
systems (Gursoy et al., 2022).

In scenarios where direct access to data or full knowledge of ranking
algorithms is unavailable, researchers can still leverage simulations. Tools
like Virtual-Taobao (Shi et al., 2019) and AESim (Gao et al., 2021c) have
been developed for this purpose, simulating the interaction dynamics
between stakeholders and the system under certain assumptions. It
is crucial for these simulation frameworks to remain flexible, allowing
researchers to modify or choose the foundational assumptions to more
accurately reflect real-world search environments.
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7.4 Causal Fairness

The current focus in quantifying fairness in search systems is predomi-
nantly on statistical-based measures, which assess correlations between
predictive outcomes and sensitive attributes. These methods are pre-
ferred for their relative ease of calculation and implementation. However,
they have limitations, as they rely on correlation rather than causation.
This means they can only determine fairness based on the specific metric
being used. Furthermore, addressing any identified fairness disparities
requires not only an understanding of how these statistics are generated
but also insights into assigning responsibility and devising remedies.

Looking at fairness from legal and philosophical perspectives uncov-
ers another drawback of statistical fairness notions. In discrimination
cases, for instance, there might be a need to demonstrate a causal
link between the outcome (such as ranking of candidates in hiring)
and a sensitive attribute (such as gender or race). This necessitates an
exploration of the causal relationships rather than just associative ones.

Causal fairness metrics, which measure the causal effects of sensitive
features on outcomes, offer a more nuanced analysis. They examine the
dependency between protected attributes and final decisions, allowing
for an investigation into the actual causes of unfairness, which statistical
measures cannot provide. In search systems, this means addressing not
just the symptoms, but the root causes of unfairness. For example,
causal fairness seeks to identify and correct structural and algorithmic
biases, focusing on protected attributes like race, gender, or age.

Contrary to statistical-based approaches that rely solely on data,
causal-based fairness incorporates additional structural knowledge of
how variables interact in a causal model, like a causal graph (Makhlouf
et al., 2020). These notions typically involve interventions and counter-
factuals (Li et al., 2023; Le Quy et al., 2022), and promising approaches
have been proposed for classification (Kusner et al., 2017) and recom-
mendation systems (Li et al., 2021a). The application of causality in
fair search is still nascent (Yang et al., 2020), but we anticipate that
incorporating causal considerations will introduce new challenges and
opportunities for advancing fairness in search systems.
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7.5 Large Language Models and Search

The advent of Large Language Models (LLMs) such as GPT mod-
els (OpenAI, 2023) and LLaMA (Touvron et al., 2023) has revolution-
ized the field of natural language processing, as these transformer-based
models exhibit remarkable language understanding, generation, and
generalization capabilities as their sizes are scaled up. Despite their
capabilities, LLMs come with their own set of limitations, such as hal-
lucination, lack of commonsense reasoning, and sociotechnical concerns
related to fairness and bias. This is an emerging area of research with
only preliminary findings to date.

Recent research has sought to leverage LLMs to improve various
components in a search system, including query rewriters, retrievers,
rerankers, and readers, demonstrating promising results (Zhu et al.,
2023). As LLMs gain prominence, assessing their fairness is becoming
as imperative as evaluating their effectiveness and efficiency, especially
given their widespread impact and accessibility. Previous studies in
NLP (Hutchinson et al., 2020; Perez et al., 2022; Abid et al., 2021)
have documented instances of language models exhibiting bias against
marginalized groups.

While the fairness of traditional search engines has been considerably
investigated, there remains a significant research gap in understanding
how LLMs, when employed as components or entire systems of IR,
impact fairness in search. Recently, Dai et al. (2024a) presented a sur-
vey on bias and unfairness in IR systems integrated with LLMs. Their
work frames bias and unfairness as distribution mismatch problems
and examines specific issues arising at three stages of LLM integration
into IR systems: data collection, model development, and result evalua-
tion. Notably, much of the cited research focuses on recommendation
systems rather than search engines. Furthermore, Wang et al. (2024b)
evaluated fairness in ranking tasks with LLMs, and Wu et al. (2024b),
Hu et al. (2024), and Kim and Diaz (2024) investigated fairness in
Retrieval-Augmented Generation (RAG) systems. As LLMs are increas-
ingly employed to automatically evaluate search systems (Thomas et al.,
2024; Rahmani et al., 2024), to generate relevance labels (Khramtsova
et al., 2024; Zhuang et al., 2024; Zhang et al., 2024a), and to annotate
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group membership for group fairness assessments (Chen et al., 2024),
the extent to which these automated evaluations introduce new fairness
issues remains unclear.

Additionally, LLMs or foundation models at large have been instru-
mental in the creation of high-quality AI Generated Content (AIGC).
These models, with their expansive capabilities, facilitate the rapid
development of domain-specific models commonly used for generating
diverse content types, including text, images, audio, and video. For
instance, Stable Diffusion (Yang et al., 2023b) and DALL-E 3 (Betker
et al., 2023) can produce high-quality images from brief text descriptions.
The growing application of AIGC across content production pipelines in
society and the Web introduces potential risks. Studies have identified
concerns with AI-generated content, including issues related to discrimi-
nation and representational harms (Jiang et al., 2023; Deshpande et al.,
2023).

The training data for Generative AI models, being sourced from the
real world, may inadvertently perpetuate harmful stereotypes, overlook
or marginalize certain groups, and include toxic data sources. This can
lead to content that promotes discrimination or hate (Weidinger et al.,
2021; Birhane et al., 2021). While addressing biases and stereotypes
at the source data level is a step forward, it is essential to assess
unfairness throughout the entire model training and development life
cycle, extending beyond just the data source. Furthermore, defining
what constitutes a truly unbiased dataset poses a significant challenge.
The depth and characteristics of these issues within Generative AI
models have not yet been comprehensively investigated (Chen et al.,
2023a).

A key question that emerges as the Internet is increasingly populated
with AIGC is its impact on the ranking results of retrieval systems. In
exploring this, Dai et al. (2024b) revealed that neural IR models exhibit a
bias towards text generated by LLMs, a phenomenon they term as source
bias. Building on this, Xu et al. (2023) extended the study of source
bias in AIGC to include text-image retrieval models. Their findings
indicate that these models often rank AI-generated images higher than
real images, despite the AI-generated images not necessarily exhibiting
more visually relevant features to the query than real images. This
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form of invisible relevance bias is widespread, affecting various retrieval
models with different training data and architectures. Moreover, their
research suggests that including AI-generated images in the training
data of retrieval models further intensifies this invisible relevance bias.

Anthis et al. (2024) examined the applications of existing fairness
frameworks such as group fairness and fair representations to LLMs
and showed that these frameworks either do not logically extend to
LLMs or present a notion of fairness intractable for LLMs, largely due
to the multitudes of populations affected, sensitive attributes, and use
cases. Despite the challenges, they demonstrated feasibility for achieving
fairness in particular use cases with guidelines. In light of these existing
studies, an important research direction lies in developing strategies
to mitigate the unfairness observed in LLMs, particularly within the
context of search ecosystems.

7.6 Concluding Remarks

As pointed out in Section 1.5, this monograph aims to serve as an entry
point to the field of fairness in search systems, designed to be accessible
to a broad audience, including those with backgrounds in information
retrieval and AI ethics. The rise of LLMs is profoundly transforming
search technologies, presenting new and complex challenges in the
pursuit of mitigating bias and enhancing fairness. In addition, ongoing
research in responsible AI is continually enriching our understanding of
fairness in modern information systems. Although we have not covered
this rapidly developing field in its entirety, we have aimed to provide a
holistic overview and framework by compiling and synthesizing existing
research to facilitate a deeper understanding and help address these
emerging issues. As the field evolves, new areas and challenges will
undoubtedly emerge, and we look forward to the ongoing development
of this field, which is poised to advance our grasp of fairness in search
systems.
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