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ABSTRACT
Karaoke machines have become a popular choice for many
people’s daily entertainment. In this paper, we address a novel
task of recommending a suitable key for a user to sing a given
song to meet his or her vocal competence, by proposing the
Personalized Competence-based Rating Prediction (PCRP)
model. Specifically, we learn the song embedding vectors
from the sequences of songs’ notes, and then design a history
encoder with recurrent units to extract users’ vocal information
from the history rating records and utilize a rating decoder
based on the Transformer. The experimental results on a real
world karaoke rating dataset demonstrate the effectiveness of
the proposed approach.

Index Terms— Representation learning, Encoder decoder
architecture, Music recommendation systems

1. INTRODUCTION

Karaoke has become an important form of entertainment found
worldwide. To deliver a desired performance for a target song,
a user had better select a suitable key so that the song could
meet his or her vocal competence. In music, a key is the scale
around which a piece of music revolves, and each key has
seven notes which make up the song’s melody. There are a
total of 15 keys ranging from 0 to 14, with the default key to
be 7. The original key of each song is set to fit the professional
singer’s vocal competence, and it is usually difficult for non-
professionals to sing with that key. For most users who do
no have musical knowledge, they do not know how to choose
a suitable key. Thus, to help each individual user decide the
best key for the target song becomes an important task. There
exist some works [1, 2, 3, 4] on karaoke song recommendation
which aims to recommend the songs that would fit the users’
vocal competence instead of their taste preferences. However,
all these works focus on recommending songs, and ignore the
fact that the key of a song is also an important factor during
the recommendation.

In collaboration with Daiichikosho, one of the largest pro-
ducers of karaoke machinery in the world, we are provided
users’ historical rating records and the sequences of songs’
notes in the automatic rating system. Note that the data are
processed in MIDI format which is commonly used in music

generation. For users, only one final rating is presented, which
is calculated based on the completion and perfection of the
singing record. Internally, a more detailed evaluation is given
by the rating system in the karaoke machine. Each song is
segmented into a fixed number of sections, and each section
receives a rating which ranges between 0 and 100. Each sec-
tion of the song contains multiple notes, and the length of the
section is predefined by the system. Usually, when the user
sings on a karaoke machine, their singing are recorded for
analysis. Since the users’ singing records are often not logged
by the machine, the users’ vocal characteristic can be analyzed
and extracted from their history rating records.

Inspired by the success of representation learning [5, 6, 7,
8] for natural language understanding and computer vision,
we propose an efficient and semantic representation learning
method for the notes in songs. Recently some music represen-
tation learning models are proposed to seek to learn semantic
vector representation for music based on convolutional neural
network (CNN) [9, 10, 11, 12], Transformer [13], WaveNet
[14], and VAE [15]. However, these models rely on the music’s
spectrograms or MIDI files, which is normally not available
for the vocal only recordings in our problem setting.

To the best of our knowledge, this paper presents the first
study of karaoke key recommendation. We propose the Note
Section Embedding with Key (NSEK) for learning an efficient
and semantic representation containing the key, note, and time
interval information. To recommend a key given a specific user
and a song, we propose the Personalized Competence-based
Rating Prediction model (PCRP) which can analyze the user’
history rating records and accurately predict the rating for the
target key and song without the need for vocal recording from
the user and song. The experimental results on a real world
Karaoke dataset demonstrate the effectiveness of the proposed
approach. The source code will be made public upon paper
acceptance.

2. MUSIC REPRESENTATION LEARNING

2.1. Data Characteristics

The karaoke dataset provided by the company includes the
users’ history rating records H and the notes for songs’ vocal
track N. There are a total of 11,433 users, 480,826 history
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rating records, and 1,043 songs. The default key 7 has the most
cases, which again indicates the problem that most users do
not know how to change keys to achieve the best performance.

For each jth song in N, nj is a sequence of tuples where
each tuple contains the note number, duration, and section
number. Specifically, the sequence of notes contains only the
notes for the vocal track of the songs. For each tth record
in Hu for a user u, there are the target song nt, the target
key kt, the ratings rt, the singing technique summary at, so
that Hu

t = (nt, kt, rt,at). Also, each user u had T history
records where T = |Hu|. r is a l-dimension vector since the
karaoke machine gives one rating for each of the l sections.
The singing technique summary a is given automatically by
the karaoke machine’s rating system, which has 5 columns
of statistics of the all previous singing performances. For
example, it includes the average of number of pitches that
users have sung perfectly from the past records. The larger
values in the statistics indicates the better performance.

2.2. Note Section Embedding with Key

In this section, we describe our proposed music notes repre-
sentation learning model: Note Section Embedding with Key
(NSEK). Since the original sequences of notes contain only
the discrete value of notes, we need an informative represen-
tation for the songs so that the note, the duration, and the key
could all be encoded together. Inspired by Word2Vec [5] origi-
nally proposed for words representation learning, our NSEK
learns a low-dimensional representation containing the desired
information for each song.

We first present a method to encode the duration informa-
tion. We set a standard minimum time interval and compute the
number of the interval in this duration by dividing the duration
by the interval and rounding to the closest integer. Then we
convert each note number to the text and duplicate the note text
by that number to get a note word w. For example, given a tu-
ple {65, 0.003,Sec 0} where 65 is the note number and 0.003
is the duration, and the standard interval of 0.001, the note and
the duration are jointly represented by ‘65 65 65’ as repeating
‘65’ by three times. Thus, for each sequence of notes nj , we
can get a sequence of note words wj = {w1, ..., w|wj |}. We
learn a low-dimensional representation for the note words to
use the models from Word2Vec [5]. Specifically, each word in
the sequence wj = {w1, ..., w|wj |} is encoded as g = Φ(w)
where g is the d-dimensional embedding and d is the dimen-
sion of the embedding, encoding the note and the duration
information together. After learning the embedding g for each
word in wj , we then utilize the section information to compute
the representation vector for each section in nj . To obtain the
section embedding Ej , we calculate the average of normalized
notes embedding from the same section. Since the total num-
ber of sections for each song is same, Ej is a l × d matrix so
that Ej = {ej,0, ej,1, ..., ej,l}. In default, the note number is
always under the key 7, and the new target key changes the

Fig. 1: Architecture of the PCRP model

note number by adding or subtracting the difference between
the new key and the default key. For example, if we change the
key to 8, we just need to add 1 to all note number. After getting
the new sequence of notes with the key, we perform the same
steps described above to obtain NSEK. With the target key k,
NSEK becomes Ej(k) indicating the Ej under the key k. In
this way, our proposed NSEK could integrate the key, duration,
and time interval information together in the low-dimensional
embedding vectors.

It is worth noting that we use Word2Vec [5] to learn note
embedding instead of more recent and advanced language
models such as BERT [16] and GPT-2 [17]. The main reason
is that our dataset contains only about one thousand songs,
which is quite small compared to the text corpus used to train
these deep language models.

3. PERSONALIZED COMPETENCE-BASED RATING
PREDICTION MODEL

In this section, we propose the Personalized Competence-
based Rating Prediction (PCRP) model for the key recom-
mendation. Our setting assumes the user have had at least one
record. We address the aforementioned problem using solely
the history rating records and the NSEK learned from the
sequences of songs’ notes. The PCRP model has the encoder-
decoder structure, which consists of a history encoder and a
rating decoder. The history encoder aims to analyze the user’s
history records so that the rating decoder could predict the
ratings on top of the encoder.

At each time T , the user u who has history rating records
Hu, selects a target song with ntarget. The history encoder first
computes a history vector hT using the history rating records
Hu = {H0,H2, ...HT−1}. Then for each k ∈ Z+ 6 14, we
input the target NSEK Et(k) of the song notes nt, the history
vector hT and the singing ability summary aT to the rating
decoder which will predict the rating r̂. Then the key with the
highest predicted ratings will be recommended to the user u
for the target song.

287

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 13,2021 at 19:26:14 UTC from IEEE Xplore.  Restrictions apply. 



3.1. History Encoder

In the history rating records Hu, each tuple contains the ratings
rt, the chosen key kt and the song nt. After computing the
NSEK Et(k) with the k from the song nt, how to combine the
two vectors Et(k) with rt becomes a question. We want to
extract the user’s singing ability information from the ratings
which are associated with the song notes. Thus, on the top of
the NSEK, we propose NSEK-rating which further integrates
the rating information in the embedding. Since the rating
for each section ranges from 0 to 100, we could use ratings
as the weight values that could be added to the embedding
vector for each section. The user’s performance ratings are
automatically generated by the rating system, and intuitively
the ratings could denote the level of completion of each section.
Thus, we compute NSEK-rating Qt as the weighted NSEK
using the rating per section as Qt = rt � Et(k) where �
is the element-wise product and each rating value in rt are
normalized into the range 0 to 1. Under this transformation,
the NSEK-rating represents both the notes information and
the performance information. Then we propose to input each
NSEK-rating Qt to recurrent cells, and use the output hidden
vector as the latent representation for Qt. For users with more
than one history rating records, we take an mean of the hidden
vectors. Specifically, we use the recurrent unit with the share
weights to output a hidden vector v for each Qt , and we
compute the history vector h as h = 1

T

∑T−1
i=0 vi.

3.2. Rating Decoder

The rating decoder aims to use the history vector h to predict
the rating for each section in the target song. The transformer
[18] has already shown its capability of analyzing word se-
quences and been successfully applied in many domains such
as question answering. Thus, we use the transformer encoder,
denoted as TE, to encode the user’s history information with
the song information. Specifically, as illustrated in Figure
1, besides the history vector h, we also make the use of the
singing ability summary at by concatenating it with h, and
a dense layer F is applied to encode the concatenated vector
such that p = F(h,at). Since the resulting vector p is the low-
level representation of the user’s past performance summary,
we then concatenate p at each section’s embedding in Ej(k)
of the target song as Zt = {(e0,p), (e1,p), ..., (el,p)}, and
the input the resulting matrix Zj to TE. Here we only used
the transformer encoder because we believe the time depen-
dency between ratings in different sections is weak, so a dense
layer is used to output the ratings. The performance in the
previous section will not affect the ratings in the next section
because the singing records are evaluated by the system au-
tomatically section by section. The result vector output from
the transformer encoder is passed through the ReLu activation
[19] followed by a dense layer F of size d × l where d is
the dimension of the result vector. Thus, the output vector
from the dense layer is the sequence of ratings for the target

Fig. 2: Visualization of the song section embeddings. The
embeddings from the same song are marked in the same color.

song. Specifically, the target predicted rating r̂ is calculated
by r̂ = F(Relu(TE(Zt))).

3.3. Recommendation

Since the final output from the model is the sequence of ratings
r̂ for the target song and key, it does not directly indicate the
best key for the target song. The output ratings from the model
are used to show the predicted performance of the user under
the target key. To perform recommendation, we need to predict
ratings for each of 15 keys and rank the key by the ratings
summed from all sections. The key with the best rating is
presented to the user as k̂ = argmaxk

∑l−1
i=0 r̂i.

4. EXPERIMENTAL RESULTS

4.1. Note Embedding

Before we discuss the performance of PCRP, we first evaluate
the note embedding with NSEK proposed in Section 2.2 to
check if the learned embedding encodes desired information.
To learn the note words embedding, we train with the Fasttext
skip gram model [20], and conduct evaluation through the k-
nearest-neighbors. The intuition is as follows, the note section
embedding from the same song should be closer to each other
in the embedding space. We randomly select 10 songs and plot
the note section embedding vectors learned by NSEK in the 2-
dimension space using UMAP [21] as shown in Figure 2. Note
that the segments embedding from the same song are given the
same color, and two example song IDs are marked. From the
figure, it is clear that the section embeddings from the same
song are clustered together, which indicates the effectiveness
of NSEK.

4.2. Rating Prediction and Key Recommendation

For a fair comparison and having the same validation dataset
for different length of history rating records, we split the train-
ing and validating dataset based on the length of users’ history
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Models MSE NDCG@3 NDCG@5 P@3 P@5 MRR
Linear Regression 185.504 0.082 0.132 0.119 0.238 0.174

Transformer Encoder 110.250 0.151 0.253 0.272 0.530 0.211
Dense 84.456 0.183 0.301 0.285 0.563 0.259

PCRP GRU 84.640 0.250 0.310 0.285 0.430 0.327
BiGRU(Avg) 82.628 0.274 0.297 0.318 0.377 0.350

BiGRU(Dense) 83.906 0.179 0.216 0.285 0.377 0.237

Table 1: Experimental results of rating prediction in MSE and of key recommendation in other metrics

records. The users who have more than 700 records are used
for validation, which has a total of 68,343 records (15%) from
the entire dataset. Below are the baseline methods for compar-
ison in the experiments:

• Linear Regression: We flatten the NSEK embedding and
concatenate it with at and then input the resulting vector to
the linear regression model to predict the l dimension rating
vector.

• Transformer Encoder: We use the transformer encoder [18]
as the rating decoder. We pass only at through the dense
layer such that r = F(at). Other components remain the
same.

We also experiment with four variants of PCRP with different
history encoders. During the training, we minimize the mean
square error loss (MSE) function with the Adam optimizer [22].
The other parameters of the model include: batch size=256,
learning rate = 0.001, epochs = 15.

• Dense: We concatenate the NSEK embedding and ratings
and pass the concatenated vector through a dense layer. The
resulting vector is used for history vector h.

• GRU: We input the NSEK-rating to GRU [23] and use the
output hidden vector as h.

• BiGRU(Avg): We use the BiGRU [24] as the recurrent cell,
and input the NSEK-rating to BiGRU. Then we use the
average of the output hidden vector as h.

• BiGRU(Dense): We also propose to flatten the output hidden
vectors from the BiGRU and pass it through a dense layer to
get the history vector h.

To evaluate the predicted final rating of user’s singing
performance, we use the mean square error (MSE) [25] by
comparing the predicted rating against the actual rating. The
evaluation of the recommended keys is more tricky because
we do not know the optimal key for the given song and user.
However, we observe that only less than 1% cases have an
average rating greater than 95 (out of 100). These high ratings
which indicate the excellent performance delivered by the
user can be viewed as the best keys for those cases. The
proposed model predicts the ratings for all the keys (from
0 to 15) and ranks the keys in the descending order of the

predicted ratings (averaging over all the sections in a song).
We can then evaluate the ranked key list for each user of the
test data using the standard ranking based evaluation metrics
for recommendation systems such as normalized discounted
cumulative gain (NDCG) and mean reciprocal rank (MRR)
[26].

Table 1 contains the results of our proposed model against
the baselines for rating prediction (in MSE) and recommenda-
tion (in NDCG and MRR). As we can see, PCRP substantially
reduced the rating prediction error in MSE, compared with
linear regression and Transformer. The improvements in terms
of MSE show that analyzing the history rating records helps
the model better understand the user’s singing ability, thereby
leading to a more accurate rating prediction. The history rating
records contain the underlying user information which could
be extracted by our proposed history encoder. As another ref-
erence point, if we use the average of each user’s historical
ratings for prediction, the resulting MSE is 539.633, which is
much higher than the machine learning based methods.

Regarding the recommendation performance, we compare
the top-k recommendation performance using the NDCG@k,
Precision@k, and MRR. As shown in Table 1, all the vari-
ants of PCRP yield much better results than the baselines,
which demonstrates the advantage of using history encoder in
PCRP. Among the four variants, BiGRU(Ave) produces the
best results in NDCG@3, P@3, and MRR, which indicates
the usefulness of the Bidirectional GRU units with averaging
the output hidden vectors. The overall results have a similar
pattern as the rating evaluation results, which shows the effec-
tiveness of PCRP in the recommendation task. This is also
consistent with the intuition that better rating predictions will
lead to better performance in recommendation.

5. CONCLUSION

This paper tackles a novel personalized recommendation task:
karaoke key recommendation. We leverage the success of
representation learning in natural language processing to en-
code the key, note, and time interval information in a song.
Based on the learned music embeddings, an encoder-decoder
architecture is proposed to make predictions on users’ final
performance on a given song and key. The experiments on a
real world karaoke dataset demonstrates the effectiveness of
the proposed approach.
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