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ABSTRACT
�e accelerating rate of scienti�c publications makes it di�cult to
�nd relevant citations or related work. Context-aware citation rec-
ommendation aims to solve this problem by providing a curated list
of high-quality candidates given a short passage of text. Existing
literature adopts bag-of-word representations leading to the loss
of valuable semantics and lacks the ability to integrate metadata
or generalize to unseen manuscripts in the training set. We pro-
pose a �exible encoder-decoder architecture called Neural Citation
Network (NCN), embodying a robust representation of the citation
context with a max time delay neural network, further augmented
with an a�ention mechanism and author networks. �e recurrent
neural network decoder consults this representation when deter-
mining the optimal paper to recommend based solely on its title.
�antitative results on the large-scale CiteSeer dataset reveal NCN
cultivates a signi�cant improvement over competitive baselines.
�alitative evidence highlights the e�ectiveness of the proposed
end-to-end neural network revealing a promising research direction
for citation recommendation.

CCS CONCEPTS
•Information systems →Information retrieval; •Computing
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1 INTRODUCTION
Authors establish credibility, honesty, and authority by providing
accurate and relevant citations. �e vast plethora of scienti�c lit-
erature makes searching for relevant work time consuming and
highly keyword dependent. On the other hand, following the pro-
ceedings of well-known conferences restricts the scope of related
work. Ideally, we desire a personalized, curated list of high-quality
recommendations. We focus on the task of context-aware citation
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recommendation, where given a citation context (query), we rec-
ommend a list of high-quality candidate papers to �ll the citation
placeholder. A citation context comprises a small window of words
surrounding a placeholder denoting where the citation should ap-
pear [2, 6–9]. We assume the surrounding text of a placeholder
provides a short and concise summary of the paper’s content.

Traditional information retrieval techniques rely heavily on key-
word overlap, but identifying the critical structures in abstract ideas
requires additional levels of semantic relations. For example, “deep
learning” was previously known as “cybernetics” in its infancy and
“connectionism” in its second resurgence [5]. As language evolves
over time, new terms emerge while others become less frequently
used. Similarly, the denotative meaning of words are generally
�xed, perhaps more importantly, the connotative meaning changes
throughout time. �e words “deep” and “learning” treated inde-
pendently as a bag-of-words lacks conceptual interpretation but
modeling the conditional probability of the words together pro-
duces a clear concept. �e word usage between the content in the
citation context and corresponding cited document lead to a vocab-
ulary gap [7–9] causing a mismatch between keywords leading to
poor performance with standard information retrieval (IR) methods.
In addition, existing methods cannot easily incorporate metadata
without additional feature engineering or explicitly linked data [2].

We proposeNeural CitationNetwork (NCN)1 an encoder-decoder
framework inspired by the success of neural machine translation
(NMT) [1, 3, 10] which can learn relations between parallel pairs
of variable-length text. Consequently, NCN is capable of charac-
terizing the semantic composition of citation contexts and corre-
sponding cited documents title by exploiting author relations. �e
encoder capitalizes on the computational advantages of a max time
delay neural network [4] while the decoder leverages the capacity
of recurrent neural networks (RNN) in�uenced by both the author
networks and a�ention mechanism. As each composer of literature
has her own writing style, grammatical structure, word usage and
citation preference. NCN leverages these associated a�ributes with
each author by utilizing only their name, producing signi�cant
performance gains. Furthermore, NCN can generalize to new pa-
pers not present in the training set. To the best of our knowledge,
no prior work has addressed citation recommendation with the
encoder-decoder framework. Experimental results on the CiteSeer
dataset demonstrate NCN produces a signi�cant improvement Re-
call, Mean Average Precision (MAP), Mean Reciprocal Rank (MRR)
and Normalized Discounted Cumulative Gain (NDCG) over base-
line methods. �alitative results demonstrate the e�ectiveness of
the proposed end-to-end neural network.

1Source code: h�ps://github.com/tebesu/NeuralCitationNetwork.

https://github.com/tebesu/NeuralCitationNetwork
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Figure 1: �e proposed architecture of Neural Citation Network (NCN) with the attention mechanism and author networks.
�e dashed arrows represent recurrent dependencies.

2 RELATEDWORK
Citation recommendation spans a variety of methodologies such
as traditional IR, topic modeling, Restricted Boltzmann Machines,
collaborative �ltering, statistical machine translation (SMT) and
neural networks [2, 8]. Due to space limitations, we focus on the
la�er two being the most relevant to our work. In SMT, a translation
model treats the citation context and cited document content as
parallel sequences [6, 7, 9]. �e objective is to learn an alignment or
transition probability the given citation context requires a citation.
Lu et al. [9] learn an alignment from the citation context and the
corresponding document’s text, demonstrating improved perfor-
mance over information retrieval methods when aligning to the
shorter abstract rather than the full body of text. Similarly, Citation
Translation Model (CTM) [7] treats each cited document as a token
aligning the citation contexts to this reference. In order to address
the noisy alignment between citation contexts and documents, He
et al. [6] leverage topical information in their SMT model. More
recently, Huang et al.[8] learned a distributed word representation
of the citation context and the associated document embedding via
a feedforward neural network. A comprehensive survey on citation
recommendation can be found in [2].

NMT provides a general framework to address parallel pairs of
arbitrary length sequences, where the source sequence is encoded
to a �xed length representation followed by a decoder translating
this representation to the target sequence conditioned on all previ-
ous states one token at a time. �e encoder and decoder functions
are application speci�c, in machine translation RNNs are typically
used for both the encoder and decoder [1, 3] while in imaging
captioning the encoder may be represented as a Convolutional neu-
ral networks (CNN) [10]. Bahdanau et al. [1] propose adding an
alignment mechanism or a�ention model to the encoder-decoder
framework alleviating the bo�leneck placed on the encoder func-
tion to represent the entire source sequence.

CNNs demonstrate competitive performance to RNNs on natural
language processing (NLP) tasks yet computationally cheaper by
exploiting parallelism. In particular, the max time delay neural
network (TDNN) [4] architecture performs a 1-dimensional con-
volution over a window of words constructing feature detectors
followed by a max-pooling layer to extract relevant features from

each sequence (time) simultaneously producing a �xed length rep-
resentation.

3 NEURAL CITATION NETWORK
�e proposed model is based on the encoder-decoder architecture
with the a�ention mechanism [1] to integrate complementary au-
thor information and learn rich feature representations.

3.1 Encoder
In our encoder we leverage the TDNN [4] a CNN variant designed
to capture long-term dependencies with a 1-dimension convolu-
tion over all possible word windows for a given context. A non-
linear projection coupled with max-pooling extracts rich feature
representations from each convolved word window. Speci�cally,
given a citation context of length n, let xqt be a д dimensional
word embedding corresponding to the t th word in the citation
context and xq1:n = xq1 ⊕ . . . ⊕ xqn denote the concatenation of the
embeddings from 1 to n. A convolutional �lter w ∈ Rl ·д slides
over l words or regions at a time over all possible window lengths
{xq1:l , x

q
2:l+1, . . . , x

q
n−l+1:n }, see Figure 1. We de�ne the convolu-

tional layer as:

ok = ReLU(wTxqk :k+l−1 + bk ); ô = max{o1, . . . ,on−l+1}

where ReLU is the nonlinear activation function max(0,x ) and ok
is the kth feature map, o ∈ Rn−l+1. �e max-pooling over time
yields a scalar representing the relevant feature ô detected for the
given set of feature maps subsequently converting the variable
length sequence to a �xed one. In order to capture more complex
relations the process is repeated p times with di�erent �lter weights
yielding ôj ∈ Rp . Finally, a fully connected layer allow interactions
between the various phrase level feature maps extracted from the
max-pooling layer, leading to:

sj = tanh(Usj ôj + bsj ) (1)

where the TDNN aims to project the raw citation context Xq , to
a �xed summary representation sj over feature maps of the jth

sliding region size of lj . �e �nal transformation f (Xq ) applies a set
of variable region size �lters L = {l1, . . . , l |L | } to capture di�erent
granularity of phrases e.g. bigrams, trigrams. �e TDNN exploits
the property of parallelism allowing all featuremaps to be computed
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in parallel yet obtaining competitive performance with an RNN
encoder (Section 4.2). �e phrase level representation obtained by
the TDNN provides a trade-o� between capturing semantics and
computational time.

3.2 Decoder
Since the title of a manuscript is short but more concise, we require
a �ner grain representation than the phrase level of the TDNN. We
adopt an RNN to represent the decoder with its large capacity to
condition each word on all previous words in the sequence while
considering its internal state and the encoder’s representation. Let
xdi be a e dimensional embedding corresponding to the ith word
of the cited document’s title of length m. We utilize the Gated
Recurrent Unit (GRU) [3] to help prevent the vanishing or exploding
gradient problem, formally:

zi = σ (Wzxdi + Vzci + Uzhi−1)

ri = σ (Wr xdi + Vr ci + Ur hi−1)

h̃i = tanh(Woxdi + Voci + ri ◦ Uohi−1)

hi = (1 − zi ) ◦ h̃i + zi ◦ hi−1

whereW[z,r,o],V[z,r,o],U[z,r,o] are weight matrices to be learned,
h̃i is the new updated hidden state, zi is the update gate, ri is the
reset gate, σ (·) is the sigmoid function and ◦ is the element wise
product.

Although the max pooling layer obtains the most relevant fea-
tures present for a given �lter, it treats each feature map with
uniform importance and words on the margins of the sequence are
neglected. �e a�ention mechanism learns a weighted interpola-
tion ci dependent on all of the encoder’s representation conditioned
on previous decoder states obtaining a richer representation with:

ci =
∑
j
αi j sj where αi j = so�max(vT tanh(Wahi−1 +Uasj ))

where αi j is the alignment between the ith word and the jth output
from the encoder parametrized as a feedforward neural network fol-
lowed by a so�max function [5]. Figure 1 illustrates these recurrent
dependencies with dashed arrows.

3.3 Author Networks
�e author(s) of a manuscript may have a large impact on the audi-
ence, popularity, and citations. Frequently, one may follow speci�c
researchers or groups with similar interests. �e lead author of a
paper may hold the most authority. On the other hand, the most in-
�uential author may not necessarily be the �rst author. To capture
the most prominent author, we consider both the citing (context)
and cited (title) manuscript authors with a shared embedding space,
but learn two separate TDNNs. Intuitively, the author’s character-
istics may remain static hence the shared embedding space but the
author has no direct control over if she will be cited or not (with
the exception of self-citation). For example, a popular author may
be frequently cited yet citations may not be reciprocated leading
to distinct roles. We treat each author as a token by denoting Aq

and Ad as the embeddings of the citation context (query) and cited
paper’s (document) author(s), respectively. Similar to the encoder

Recall MAP MRR NDCG
BM-25 0.1007 0.0556 0.0606 0.0676
CTM 0.1288 0.0726 0.0777 0.0875
RNN-to-RNN 0.1590 0.0958 0.1054 0.1134
TDNN-to-RNN 0.1579 0.0935 0.1032 0.1114
Neural Citation Network 0.2910 0.2418 0.2667 0.2592

Table 1: Performance comparison of the top 10 recommen-
dations on Recall, MAP, MRR, and NDCG. (NCN is statis-
tically signi�cant from all baselines on a paired t-test p <
0.001)

representation presented in Section 3.1, we exploit the TDNN to
learn higher level joint author interactions with:

sj = [f (Xq ) ⊕ f (Aq ) ⊕ f (Ad )]j (2)
By concatenating the citation context summary with the author’s
representation, the a�ention mechanism conditions on the author
networks in addition to the encoder’s output. Hence an interaction
between the composition of the context and author takes place over
the course of the decoding process. �e �nal output from the RNN
decoder is projected into a so�max layer producing a probability
over the vocabulary:

P (yi |y≤i , s) = so�max(Vhi )
where P (yi |y≤i , s) denotes the conditional probability of all previ-
ous words in the cited papers title prior to i . Since the entire archi-
tecture is di�erentiable, we jointly training the encoder-decoder
via stochastic gradient descent (SGD) [5] maximizing the following:

log P (y|Xq,Xd,Aq,Ad) =
m∑
i
log P (yi |y≤i , s) (3)

Once the network is fully trained we can score a cited document
y given a citation context Xq and author information Aq ,Ad with
Equation 3.

4 EXPERIMENTS
4.1 Setup
We evaluate NCN on the RefSeer dataset 2 [8]. A�er preprocess-
ing invalid entries, we obtain 4,549,267 context pairs with 855,735
papers in a citation-cited relation. Similar to [8], we divide the
data by year, where papers before, a�er, and equal to 2013 yield
4,258,383 training; 148,927 testing; and 141,957 validation citation
contexts respectively. For text preprocessing, we perform tokeniza-
tion, lemmatization and take the top 20K most frequent terms on
the encoder and decoder sides, where words not on this list are
replaced with a special <UNK> token. We also take top 20K most
frequently cited authors by name and consider the �rst 5 authors
per paper for simplicity. Authors not on the short list are replaced
with a with a special <UNK>Author.

All hyperparameters are determined according to the validation
set. For clarity, we set all embedding sizes, batch sizes, RNNmemory
cell sizes and feature maps to 64. We apply gradient clipping at 5,
dropout probability to 0.2 and the number of recurrent layers to two
for both the encoder (when applicable) and decoder. For the NCN
2h�p://refseer.ist.psu.edu/data/

http://refseer.ist.psu.edu/data/
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Figure 2: Recall, NDCG, MAP, and MRR as the number of
recommendations vary from 1 to 10.

encoder, convolutional �lters use region sizes: 4, 4, 5 and author
networks use region sizes: 1, 2. We use the Adam optimizer [5] for
a total of 5 training iterations, taking approximately 10 hours to
train NCN on a NVIDIA Titan X.

We report the following metrics: Recall, Mean Average Precision
(MAP), Mean Reciprocal Rank (MRR) and Normalized discounted
cumulative gain (NDCG) on the test set. For NCN, we rerank the top
2048 documents retrieved by BM-25 with Equation 3 and include
the ground truth if it is not present.

4.2 Baselines
We validate the e�ectiveness of NCN against four baselines: BM-
25; Citation Translation Model (CTM) [7], we learn a translation
model using the GIZA++ toolkit; TDNN-to-RNN, follows the NCN
formulation excluding author networks; RNN-to-RNN, identical to
TDNN-to-RNN but utilizing a RNN as the encoder.

Table 1 demonstrates NCN outperforms all baselines on every
metric by 13-16%. BM-25 displays the poorest performance veri-
fying the existence of the vocabulary gap while CTM3 improves
upon standard IR methods but the bag-of-words assumption lacks
su�cient capacity to capture complex relations. Since NCNwithout
author content degenerates to the TDNN-to-RNNmodel, we clearly
see the advantages of incorporating author information. RNN-to-
RNN marginally outperforms the TDNN-to-RNN model, however,
the additional computational overhead may not justify the 0.3%
increase in performance taking 11 hours to train yet NCN produces
superior performance in less time. We observe smaller performance
gains on position aware metrics in NCN when varying the number
of recommendations. An improvement of 1.6% on NDCG, 2.4% on
MAP and MRR when cu�ing o� the number of recommendations
at 10 versus 1 as illustrated in Figure 2.

4.3 �alitative Study
�e top three recommendations by NCN, CTM and RNN-to-RNN
for the context (query) are listed in Table 2. Both baselines correctly

3Performance is less than reported in [8] due to signi�cantly reduced vocabulary size.

Context: “�nd a distribution over the latent variables that is close to
the posterior of interest. Variational methods provide e�ective
approximations in topic models and nonparametric Bayesian models”
Neural Citation Network
1. Graphical models, exponential families, and variational

inference
2. Graphical models and variational methods
3. An introduction to variational methods for graphical models
CTM
1. Indexing by latent semantic analysis
2. An introduction to variational methods for graphical models
3. Bayesian data analysis
RNN-to-RNN
1. An introduction to variational methods for graphical models
2. �e variational formulation of the Fokker–Planck equation
3. A Bayesian analysis of the multinomial probit model with fully

identi�ed parameters
Table 2: Top 3 recommendations for NCN, CTM and RNN-
to-RNN for the citation context (query), correct recommen-
dations are in bold.

recommend one item and NCN provides two correct recommenda-
tions; however, the incorrect recommendation (2) appears to be a
plausible citation. We noticed the recommendations produced by
NCN all have common authors4. Recommendations 1 and 3 contain
M. Jordan as an author and recommendations 2 and 3 shares the au-
thor Z. Ghahramani further portraying NCNs successful integration
of author information to produce relevant recommendations.

5 CONCLUSIONS AND FUTUREWORK
We have introduced NCN, a �exible architecture capable of incorpo-
rating author metadata and highlight a promising new direction for
context-aware citation recommendation. In future work, we plan
to explore temporal aspects, and the large hyperparameters space
such as �lter strides, wide convolutions, dynamic k-max pooling
and multi-channel convolutions.
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