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Abstract Major job search engines aggregate tens of millions of job postings online to
enable job seekers to find valuable employment opportunities. Predicting the probability
that a given user clicks on jobs is crucial to job search engines as the prediction can be used
to provide personalized job recommendations for job seekers. This paper presents a real-
world job recommender system in which job seekers subscribe to email alert to receive new
job postings that match their specific interests. The architecture of the system is introduced
with the focus on the recommendation and ranking component. Based on observations of
click behaviors of a large number of users in a major job search engine, we develop a set of
features that reflect the click behavior of individual job seekers. Furthermore, we observe
that patterns of missing features may indicate various types of job seekers. We propose a
probabilistic model to cluster users based on missing features and learn the corresponding
prediction models for individual clusters. The parameters in this clustering-prediction pro-
cess are jointly estimated by EM algorithm. We conduct experiments on a real-world testbed
by comparing various models and features. The results demonstrate the effectiveness of our
proposed personalized approach to user click prediction.
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1 Introduction

Major job search engines such as Simply Hired,1 Indeed,2 and Glassdoor3 aggregate tens of
millions of job postings online to provide job seekers with portals to find the employment
opportunities that match their interests. To provide the most relevant job postings for a job
seeker, a job search engine rely on the search queries provided by the job seeker to infer
the job seeker’s intent. As new job openings get created by employers on a daily basis, it
is not the best option for a user to make a daily basis search. In order to catch the earliest
job opportunities, many job seekers choose to engage with the job search engine through
email alerts, where job postings relevant to the job seeker’s interests are directly sent to
their emails. Recommendation through email alerts is an important form of engagement
for job search engines, as it turns a short-term engagement such as search into a long-term
engagement such as email subscription. Figure 1 shows an example of job recommendations
through email alerts by Simply Hired.

A query for job search involves a keyword and location pair, e.g. software engineer, San
Francisco, CA. Such a query returns job openings in a local job market in which a job seeker
can explore employment opportunities. For popular search queries, there are often hundreds
to thousands of relevant job postings everyday, and only a limited number can fit in an email
(e.g., SimplyHired’s email alert service recommends a maximum number of 22 jobs in an
email). If the search algorithm relies only on the search query, the limited number of jobs
that can fit in an email may not contain the job posting that would be most interesting and
relevant to the job seeker. Consequently, engagement with the email could be negatively
affected. On the other hand, if the history of a job seeker’s online activities is available, we
can infer the user intent, and customize job recommendations for her.

This paper focuses on predicting user clicks on job postings for the purpose of person-
alizing job recommendation results through email alerts. To the best of our knowledge, no
prior work exists in the literature on personalized job recommendation through email alerts.
Our contributions can be summarized as follows:

– We present the architecture of a real-world job recommender system that currently
serves a large number of online job seekers.

– We develop a set of user-specific features that reflect the click behavior of individual
job seekers and groups. These features are derived from observations of click behaviors
of a large user base in a major commercial job search engine. These features can be
used by machine learning models to learn the preferences of specific job seekers.

– We analyze the missing data in the features and observe that the patterns of missing fea-
tures may indicate various types of job seekers. We argue that a single model may not
be able to capture the wide variate of all the users and jobs. We proposed a probabilis-
tic clustering-prediction model to train different prediction models for different user
clusters based on missing features. The clustering and prediction are done in a unified
probabilistic framework.

– We conduct experiments on a real-world testbed by comparing various models and fea-
tures. The results demonstrate the effectiveness of our proposed personalized approach
to click prediction.

1http://www.simplyhired.com/
2http://www.indeed.com/
3http://www.glassdoor.com
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Figure 1 An example of Simply Hired’s email alert service for job recommendation

2 Related work

The early job recommender systems relied on Boolean search which often could not sat-
isfy job seekers’ complex information needs [21]. Later, classic recommendation techniques
such as collaborative filtering and content based filtering were applied to recommend jobs
[10]. Malinowski et al. [21] proposed a probabilistic model that estimates the probability
that an applicant likes a job. [15] further extended the work by proposing a unified multi-
layer framework to support the matching of individuals for jobs and team members who are
willing to collaborate with them. A machine learning based approach was applied to job rec-
ommendation by extracting a number of job transitions from publicly available employee
profiles on the Web [26]. Some works attempted to build user profiles by extracting the
meta-data from resumes including demographics, education, experience, language skills,
and so on [21]. [27] constructed user profiles by passively detecting the click streams and
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user behaviors. [9] collected and analyzed the job related information from various social
media sources. A survey on job recommendation can be found in [1]. More recently, [33]
investigated the time effect, i.e., when is the right time to make a job recommendation. They
proposed a hierarchical proportional hazards model by characterizing the tenure between
two successive decisions and related factors. A hybrid job recommender system is proposed
by combining content similarity with the PageRank algorithm [39].

Several implementations of job recommender systems were presented including
CASPER [5], Proactive [17], and Absolventen [14]. The goal of CASPERwas to personalize
job search in two steps [5]: a server side similarity-based retrieval of jobs and a client side
case-based personalization. Specifically, to construct user profile, implicit feedback from
various user actions was used including applying for a job, emailing, reading, and visiting
a job. The authors showed that implicit feedback was a valuable input for personalized job
search as it could be monitored without much extra effort. Proactive [17] was a job recom-
mender in which every job advertisement included a bookmark option. The bookmarked
jobs were then stored in the user profile and then passed as input to the actual recommender
which identified similar jobs based on content. Lee and Brusilovsky [18] extended these pro-
files by inferring preferences from implicit negative feedback. Specifically, if a job seeker
read a job description without adding it to the bookmarks, it was deemed as negative feed-
back. Their experimental results showed that adding of negative feedback was helpful in
order to distinguish between relevant and non-relevant jobs. Absolventen4 is an Austrian job
board for graduates and a recommender system is used to suggest appropriate jobs to appli-
cants. It was shown that only around half of the registered job seekers fill out the resume,
for the other half no personalized recommendations can be generated. To improve this, the
recommender system has been enhanced with implicit relevance feedback and the impacts
of this approach have been examined in [14]. Four different user actions for implicit feed-
back have been identified including reading of a job description, bookmarking, applying
and searching for jobs.

Some job recommender systems also offer job seeker recommendations [21, 32, 37] (i.e.,
given a job, find the most qualified candidates). In fact, job recommendation problem is
bidirectional recommendation between job seekers and jobs [37]. In the Bilateral Person-Job
Recommender [21], the preferences of the recruiter were accumulated with the previously
selected candidates, whereas the job seeker’s profile consisted of information from relevant
jobs. A probabilistic model was established that predicts whether a job seeker is relevant or
not. This people recommendation task is closely related to expert search (i.e., given an exper-
tise area, find the people who have the expertise), which is an active research area in the field
of information retrieval. A comprehensive survey on expertise retrieval can be found in [3].

Click prediction has been extensively investigated as a core component in sponsored
search for ranking ads. The state-of-the-art sponsored search systems typically rely on a
machine learned model to predict the clickability of ads returned for a user search query. In
previous studies [2, 12], the historical click information for each ad is shown to be effective
for predicting the future click probability of the ad. Cheng and Cantú-Paz [8] further studied
the personalization of click models in sponsored search so that the users would be presented
ads most relevant to them. However, it has been shown that practical sponsored search systems
often contain many ads without adequate historical click-through data, even after aggregation
at different levels [34]. Consequently, there are many features missing in the click prediction
models, which deteriorates the predictive performance of those machine learning based models.

4https://www.absolventen.at/
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The presence of missing data also often poses a great challenge to many recommender
systems. Much existing work applied data smoothing methods to fill the missing values. For
example, [36] proposed a clustering based smoothing technique to predict all the missing
data based on the ratings of most similar users in the similar clusters. Ma et al. [20] propose
a missing data prediction algorithm taking information of both users and items into account.
Marlin et al. [23] systematically investigated the effect ofmissing at random in collaborative
filtering.

Another area of related work is learning to rank (L2R) for recommendation. L2R
employs a machine learning approach to rank documents and has attracted a lot of atten-
tion in the information retrieval community. The L2R techniques can be loosely grouped
into three categories: pointwise, pairwise, and listwise [19]. Since recommender systems
aim at providing users with personalized items with a descending order of relevance, per-
sonalized recommendation can be naturally casted as a ranking problem. Recent top-N
recommendation techniques have exploited learning to rank approaches including pointwise
ordinal model for predicting personalized item ratings [16], pairwise Bayesian personalized
ranking [28], and listwise collaborative filtering technique such as CLiMF [31] and TFMAP
[30]. Several of the above models including [28, 30, 31] have utilized implicit feedback to
optimize binary relevance data ranking metrics.

3 A real-world personalized job recommender

We present the personalized job recommender designed in the context of a job search engine
at Simply Hired, an online job aggregator website. The website provides a search engine for

Figure 2 Architecture of a real-world personalized job recommender
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online job postings based on more than 10 million jobs postings that it aggregates from var-
ious sources to satisfy more than 30 million unique visitors from 24 countries every month.

Figure 2 illustrates the architecture of the personalized job recommender. When job seek-
ers like the search results they are seeing, they often opt to receive further emails regarding
similar opportunities. The creation of email alerts allows the website to engage with the job
seeker over longer periods of time, providing the opportunity for the website to learn from
user behavior to produce more relevant personalized job recommendations. A significant
portion of the engagement on the Simply Hired website is driven by email alerts that inform
the job seekers about similar job openings on a daily or weekly basis. A number of curated
data sources are used in this process. The curated job inventory is aggregated from a number
of job sources:

– Company websites: Automated crawlers roam on the Web to collect and curate employ-
ment related sites and extract job postings into semi-structured records with fields such
as job title, company name, normalized location, and job category classification.

– Company and Job Board feeds: some companies and job boards send feeds of jobs to
the job aggregator in exchange for the traffic they bring to the company and job board pages.

A job seeker also has the option to upload their resumes to provide more information
about their existing roles, skill sets and interests for the personalized job recommender.
These key categories of information are extracted automatically from the resumes. Historic
user behavior is also a powerful source of information that provide insights from a collabo-
rative filtering perspective. These information can be extracted from job seekers’ behavior
with search engine result page (SERP) as well as partner websites. The interactions are
analyzed from both the click level as well as the session level.

With the availability of long-term engagements generated from job searches, and curated
data sources such as job inventory, user resumes, and user behavior, we have a platform
for personalized job recommendation. In producing an email alert, we first check to see if
there are any new relevant jobs that has been curated into the job inventory database since
the last sent email alert. If there is, the personalized job recommender ranks the relevant job
postings according to descending order, such that the most relevant job posting is listed on
top. The resulting ranked list is then sent out as an email alert. User interactions with the
sent email alerts are recorded and becomes job seeker behavior logs that are used for further
personalization.

This paper focuses on the ranking component which scores jobs by the click model to
estimate the probability they will be clicked by the email alert subscriber. This estimate
is crucial for job search engines as it influences user experience and revenue. A simple
measure of the clickability is the content similarity between job description and user query.
In this paper, we follow a machine learning approach by collecting click and non-click
events from logs as training samples [8], where each sample represents a user-job pair with
a number of user-independent and user-specific features that indicate the job clickability.
Section 4.2 introduces these features in detail.

4 Data collection and features

4.1 Data collection

We created a testbed from Simply Hired’s databases to study the characteristics of the data
and evaluate click prediction. We collected job and user interaction information of email
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alerts from July 11th − October 19th, 2013. All personally identifiable information were
removed from the dataset. We use the current data and historical data as follows.

– Current data: We use the anonymized user behavior on October 19, 2013 as current
data, which serves as labels for observable user click behavior. To avoid inaccuracies
and ambiguities caused by accounting for email clients that do not load images by
default, or pre-caches images by default, we base our analysis only on emails that have
generated at least one click, assessing the job postings that received clicks as positive
samples, and the impressed but un-clicked job postings as negative examples.

– Window data: We collect five days’ (Oct 14-Oct 18) user behaviors in the same way
as we collect for current data. We collect it day by day and make an integrations. We
collect window data in order to make models (See Section 6)

– Historical data: To personalize job recommendation, we build user profiles with fea-
tures extracted from the 75 days prior to the specific date. We focus personalized job
recommendation on job seekers who have produced at least one click in the past 75
days, and have engagement with us to the specific date. History data is a relative con-
cept. For example, for Oct 19th, 2013, the historical data would be from Aug 5th to Oct
18th. However, for October 18th, history date would be from Aug 4th to October 17th.
Since Historical data will be utilized to extract user features, which are introduced in
section 4.1.2. It is important to distinguish historical data with window data though they
have override.

The testbed includes a sample of 167,965 users and 1,231,547 jobs with a total of
1,944,673 user-job view events.

4.2 Features

An accurate machine learning based click model relies on the careful design of features.
In this work, we derive the features from the attributes which contain important informa-
tion about job, users, and their behavior. Table 1 includes the descriptions and examples of
the attributes. We can generate both user-independent and user-specific features from these
attributes as follows. Table 2 shows the list of the features.

Table 1 Attributes used to generate features

Attribute Description Example

Job title The job title associated with each job Software Engineer

Company name The company name associated with each job Google

CBSA Job location associated with each job Minneapolis, MN

ONET A code which indicates job category “53-3032.00” for trailer-truck driver

Source type Primary or job boards as job source type job board

Source name Direct company, staffing agency or job board Experteer

names as job source

Crawler ID The crawler used for locating the job posting 121

Doc score The relevancy between job description and 0.1680

user query

Query The search keywords that the user used police officer

to create an email alert
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Table 2 22 features used in the click models

14 User-independent features

Doc score, company, CBSA, ONET, crawler id, job source type, job source name, query,

job title & company, query & company, job title, CBSA & job title, CBSA & company, query & job title

8 User-specific features (based on user’s click history)

company, job location, ONET, job title & query, CBSA, job source type, job source name, query

4.2.1 Job features

Each job has different attributes such as a company name, a job title, a location, a job source,
a job category, and so on. Each attribute has 1,000 - 100,000 categories. For example, job
location is represented by 1098 CBSA (Core-Based Statistical Area) as defined by United
States Office of Management and Budget;5 job category is represented by 1,110 ONET
(Occupational Information Network) code;6 job source is represented by a sample of 7,000
Simply Hired crawlers that are indexing jobs from around the Web.

In this study, we converted thousands of categorical attributes to numerical feature values.
We performed Bayesian analysis on each attribute to compute the conditional probability
a click given an attribute based on job seeker behavior on Simply Hired, specifically as
follows:

jobf eature = P(click|attribute) − P(click) (1)

where P(click|attribute) is calculated as the number of clicks on the attribute divided by
the total number impressions of the attributes. P(click) is the total number of clicks divided
by the total number of impressions. Equation (1) can capture the degree of bias of the given
attribute. For example, if P(click|“SanJose”) = 0.05 and P(click) = 0.04, it shows that
the click on “San Jose” is more likely to happen, which may indicate the popularity of the
job location. Table 3 contains some examples of CBSA locations and their corresponding
feature values calculated based on (1).

We use a time window of 14 days to accumulate the clicks and impressions. We also
construct features with combined attributes such as job location & company name to capture
the interaction between attributes. We consider these combined features because different
job popularity may be affected by locations, companies and other factors. For example, job
seekers may prefer to work in Microsoft as a software engineer than work in U.S. Bank with
the same title. Also, people may prefer New York over San Francisco Bay area for financial
industry.

These features quantify job seeker overall preferences between different companies,
likely behavior within different geographical regions, and within different job categories.
To reduce noise, we only consider the case when there are sufficient observations for the
attribute. Through extensive experiments, we found the threshold of 100 impressions could
strike a good balance between sufficient samples and the availability of the feature for click
prediction. If there are not enough observations to compute the feature, we would assume
the feature is 0 denoting the case of missing values. This often happens when job seek-
ers used rare queries or clicked jobs that contained rare company name, title or job source.
Section 5.1 investigates the missing data issue in detail.

5http://www.whitehouse.gov/sites/default/files/omb/bulletins/2013/b-13-01.pdf
6http://www.onetonline.org
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Table 3 Examples of CBSA and
the corresponding feature values
calculated based on (1)

CBSA Location Feature Value

45020 Sweetwater, TX 0.0146

11820 Astoria, OR 0.0002

26940 Indianola, MS −0.0231

31620 Magnolia, AR −0.0247

4.2.2 User features

For personalization, we extract personalization features (See Table 2, 8 User-specific fea-
tures) based on user engagement history in the past 75 days, as our statistics show that more
than 65% of users have click history in the preceding 75 days. The companies, job titles,
queries, job locations and job categories in a users click history are used to infer their back-
ground and job search preference. The user features are extracted differently depending on
their types.

As mentioned, historical data corresponds to a current day’s data. When we extract user-
specific features, we would examine this users’ current behavior has been ever appears in
historical data sets. For example, in current data, we find a user with ID 10001 has a clicked
a job title “software engineer” on current date, Oct19th, so when we extract feature, we
would search all his clicked jobs. If he has ever clicked a job with title “software engineer”,
we would give higher value.

Historical features will be extracted as a probabilistic calculation. The formula would be
f eature = score

total occurance . Score would be assessed in different way which would be
described later. Total occurrence means that the total number of clicks made by the user in
past 75 days.

Here are the methods to compute the score by data types:
For company locations, we assess similarity by exact match. Specifically, if there is any

difference in the location values, the feature would get 0; otherwise, it would be 1, since
different locations indicate different preferences. Similarly, we apply the same method to
the attributes of company name, historical job source, historical job source, and CBSA.

For job titles and queries, we compute the cosine similarity between current and historical
attribute values. These values are often in long strings and thus it is unlikely to have exact
match. On the other hand, partial match may indicate similar job functions, e.g., “Software
Engineer vs “Software Engineer II”. Thus, we treat each string as a vector and apply the
vector space model with term frequency [22] as the weighting scheme to compute their
similarities.

For ONET category, we use a hierarchical match based on the tree-based taxonomy that
ONET classification code is designed with. Specifically, each ONET code is interpreted as
three levels marked by “-” and “.”. For example, the ONET code of 15-1133.00 for software
engineer is grouped into “15”, “15-1133”, and “15-1133.00”. The match is scored by the
degree of partial match of the code. We assign scores based on the levels of hierarchy. For
the first level, we assign 0.5 if we have a match. For the second and third, we assign each of
them as 0.25 since they are not as important as the first hierarchy.

4.2.3 Query document features

Query Document Features correspond to Table 2’s doc score in user independent feature.
We introduce it separately because we have different method in extraction. For each job in
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the email alerts, we also computed a contextual relevance score, based on similarity between
job and email alert query with boosts and penalties from location proximity, job age, and
other features. The range of contextual relevance score can be affected by the length of the
query, which can differ for different email alert query. We normalized contextual relevance
score for all jobs in one email alert using the maximum contextual relevance score in that
email alert. Normalized Doc score was used as a feature in our models.

5 Probabilistic clustering and prediction model

5.1 Motivation

Based on the data collected, we find that 46.5% of feature values were missing. We plot the
percentage of missing values in each individual feature in Figure 3. As we can see, 9 out
of the 22 features have more than 70% of missing values and only 4 features have less than
10% of missing values. We also calculate the percentage of missing features for each job
seeker and plot the histogram (normalized by the total number of job seekers) in Figure 4.
The histogram shows that more than 18% of the job seekers have around 45% of missing
features. The majority of the users have around 40% - 60% of missing features. These two
figures indicate that there exist a lot of missing values in the features, which could be caused
by various reasons in the real-world context.

We further investigate the missing features vs observed features by analyzing the pat-
terns of the features that are missing. Specifically, we randomly choose 10,000 instances
and transform the original instance-feature matrix to a binary matrix in which 1 indicates
the corresponding entry is observed and 0 means missing. Principal Component Analysis
(PCA) is then applied to reduce the dimensionality of the instances. We plot the instances in
the space of the first two principal components in Figure 5. As we can see, these instances
seem to form clusters. The experiments in Section 6.4.4 demonstrate that these clusters

Figure 3 The percentage of missing values in each individual feature. The feature IDs are based on the
orders in Table 2
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Figure 4 The histogram of the percentage of missing features for each job seeker

characterize different types of jobs and job seekers. Thus, training one flat machine learning
model may not be able to capture a wide variety of jobs and job seekers. To capture the
multimodality of the job seekers is especially crucial to provide personalized job recom-
mendations. It is worth noting that these clusters are derived from the missing features. In
other words, the patterns of missing values can be leveraged to extract valuable information
instead of being discarded by many prior methods.

Figure 5 10,000 user-job instances projected to the space of the first two principal components by PCA
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5.2 The PCP Model

In this section, we present a unified probabilistic model that can capture various types of jobs
and job seekers and meanwhile learn personalized prediction strategies for the job seekers.
Formally, given the pair (u, b) for user u and job b, our goal is to estimate the conditional
probability P(c|(u, b)) that u will click on b. c is a binary click variable c ∈ {1, −1} where
1 means click and -1 is non-click. A conventional click prediction approach would train a
single machine learning model such as logistic regression as exemplified in the prior work
[8] based on the observed features. As shown in Section 5.1, job seekers demonstrate a
variety of clicking behaviors and a single model is not flexible enough to accommodate the
multimodality of users and jobs. Thus, we assume that there are a total of K types of user-
job (u, b) pairs and P(c|(u, b)) can then be decomposed as follows by probability chain
rule and marginalization:

P (c|(u, b)) =
K∑

z=1

P (z|(u, b)) P (c|(u, b), z) (2)

where z denotes the latent type of user-job pair (u, b) and P(z|(u, b)) measures the prob-
ability that (u, b) belongs to the type z. It is noticeable that this is a soft version of
categorization which leads to a probabilistic membership assignment of (u, b) to latent
types. As shown in Section 5.1, the types of users and jobs can be determined by how
the observed features are missing. Specifically, we model P(z|(u, b)) by a soft-max

function 1
Z(u,b)

exp
(∑Nm

i=1 αzimi,(u,b)

)
where mi,(u,b) ∈ {0, 1} is the ith missing pat-

tern feature for (u, b) and αzi is the weight associated with the feature for type z. Nm

is the total number of missing pattern features and Z(u,b) is the normalization constant

Z(u,b) = ∑K
z=1 exp

(∑Nm

i=1 αzimi,(u,b)

)
to ensure P(z|(u, b)) is a proper probability. More-

over, P(c|(u, b), z) measures the probability of click/non-click given (u, b) and the type z.
It can be modeled by logistic regression as follows:

P (c|(u, b), z) = S

⎛

⎝c

Nf∑

j=1

βzjfj,(ub)

⎞

⎠ (3)

where S(·) is the sigmoid function defined as S(x) = 1
1+exp(−x)

. fj,(ub) is the j th user-job
feature for (u, b) and βzj is the weight associated with the feature. It is worth noting that
βzj depends on type z. In other words, for each type of missing patterns, there will be a
corresponding logistic regression model and different types will have different prediction
models trained for them. The proposed model can be viewed as a prediction process as
follows: given the missing pattern features m·,(u,b) for the user-job (u, b), we first determine
the type z of (u, b), and then use the logistic regression model for z to predict the click
variable c. The proposed model accomplishes this joint clustering-classification process by
maximizing the following data log likelihood function with respect to the parameters α and
β. We denote it as the probabilistic clustering-prediction (PCP) model.

L(α, β) =
∑

(u,b)

log

⎛

⎝
K∑

z=1

P (z|(u, b)) P
(
c(u,b)|(u, b), z

)
⎞

⎠

=
∑

(u,b)

log

⎛

⎝
K∑

z=1

(
1

Z(u,b)

exp

(
Nm∑

i=1

αzimi,(u,b)

))
×S

⎛

⎝c(u,b)

Nf∑

j=1

βzj fj,(u,b)

⎞

⎠

⎞

⎠ (4)
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We can use the EM algorithm [4] to estimate the parameters. The E-step can be derived as
follows by computing the posterior probability of z given (u, b) and the observed click or
non-click c(u,b):

P
(
z|(u, b), c(u,b)

) =
exp

(∑Nm

i=1 αzimi,(u,b)

)
S

(
c(u,b)

∑Nf

j=1 βzjfj,(u,b)

)

∑K
z=1 exp

(∑Nm

i=1 αzimi,(u,b)

)
S

(
c(u,b)

∑Nf

j=1 βzjfj,(u,b)

) (5)

By optimizing the auxiliary function [4], we can derive the following M-step update rules,

α∗
z· = argmax

αz·

∑

(u,b)

P
(
z|(u, b), c(u,b)

)
log

(
1

Z(u,b)

exp

(
Nm∑

i=1

αzimi,(u,b)

))
(6)

β∗
z· = argmax

βz·

∑

(u,b)

P
(
z|(u, b), c(u,b)

)
log

⎛

⎝S

⎛

⎝c(u,b)

Nf∑

j=1

βzjfj,(u,b)

⎞

⎠

⎞

⎠ (7)

The above M-step can be efficiently optimized by the L-BFGS method [25]. The number of
latent clusters K can be obtained by maximizing the sum of log-likelihood and some model
selection criteria. In the experiments, we choose Bayesian information criterion (BIC) [29],
which is a measure of the goodness of fit of an estimated statistical model, defined as
max 2L − r log(K) where r is the number of parameters in the statistical model. The pseu-
docode of the PCP algorithm is shown in Algorithm 1. The computational complexity of
the algorithm is O(KNuNb max{Nm,Nf }Niter ) where Nu is the number of users, Nb is
the number of jobs, and Niter is the maximum number of iterations specified in the EM
algorithm.

PCP can be conceptually viewed as a mixture of logistic regression models [4] but
with the mixture weights parametrized by a soft-max function over missing features. It
is also similar to the expert and query dependent probabilistic models for expert search
[38]. PCP can go beyond logistic regression and use any learning to rank model as the
prediction model in the clustering-prediction process. The parameter estimation would be
similar for other prediction models while the exact derivation of EM algorithm would be
different.

World Wide Web (2019) 22:325–345 337 



6 Experiments

6.1 Setup

The data used in the experiments were sampled from the Simply Hired traffic logs of user-
job interaction in email alerts in the period of 75 days as shown in Section 4.1. Each sample
of the data is a user-job view event labeled as click or non-click by a subscribed user of the
Simply Hired’s email alert service for job recommendation. As we mentioned in Section 4,
the data is categorized as current data, window data and historical data. After we extract
features for current data and window data (Note: historical data itself is utilized to extract
features, for window data, we also need to extract historical features). We set current data
as testing data by hide the click fact. We integrate the window data as training data and we
will build model upon that. Overall, the data have 1,964,773 user-job view events, which
includes 1,695,896’s training data. We adopt the evaluation metrics that were used for click
prediction in sponsored search: precision-recall (P-R) curves and area under curve metric
(AUC) [8]. The precision is defined as the number of user-job pairs clicked on by users
divided by the total number of user-job pairs labeled as click by the model, and recall is
defined as the number of user-job pairs labeled as click by the model divided by the total
number of actually clicked user-job pairs. In the experiments, we also show precision at
various recall levels ranging from 0.025 to 0.2. This range is chosen based on the TREC
evaluation guideline which specifies that the range of recall from 0 to 0.2 in Precision-
Recall curve characterizes high precision performance [13]. High precision performance is
important for job recommendation since we can only recommend a limited number of jobs
for a particular user.

In the experiments, we compare the performance of the proposed probabilistic clustering-
prediction (PCP) model with logistic regression. As pointed out in Section 5, any learning
to rank model can be plugged into the clustering-prediction process as the prediction model.
As the goal of our modeling is to demonstrate the usefulness of missing features in click pre-
diction, we leave the development of other similar models in the future work. On the other
hand, we do use the state-of-the-art learning to rank models as the baselines for compari-
son. We also investigate the effect of various features in click prediction (e.g., personalized
vs non-personalized).

6.2 Baseline methods

To compare with our proposed PCP model, we have applied five different learning to rank
(L2R) models. In this section, we will make a brief description of each of the state-of-art
learning models. Learning to rank models [19] has been widely used in many applications
in information retrieval. It is usually referred as machine learning techniques for training
models to solve a ranking problem. Originally, it has been popular in applications of rank-
ing documents. In our work, it could be effectively rank the job postings in a descending
order, which definitely meets the purpose of job recommendations. Below are the five L2R
baseline methods. In our experiments, we use their implementations in RankLib7 which is
a popular library of learning to rank algorithms.

– Coordinate Ascent [24]. It is a list-wise linear model for information retrieval which
uses coordinate ascent to optimize the model’s parameters. When optimizing the loss

7https://sourceforge.net/p/lemur/wiki/RankLib/
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function, it sequentially doing optimization in one dimension at a time. It cycles through
each parameter and optimizes over it while fixing all the others.

– RankBoost [11]. It is a pair-wise boosting technique for ranking. Training proceeds in
rounds. It starts with all document pairs being assigned with an equal weight. At each
round, the learner selects the weak ranker that achieves the smallest pair-wise loss on
the training data with respect to the current weight distribution. Pairs that are correctly
ranked have their weight decreased and those that are incorrectly ranked have their
weight increased so that the learner will focus more on the hard samples in the next
round. The final model is essentially a linear combination of weak rankers.

– ListNet [7]. ListNet utilizes a listwise ranking loss based on the probability distribution
on permutations. Specifically, it first defines the permutation probability distribution
based on the scores given by a scoring function. Then it defines another permutation
probability distribution based on the ground truth label. For the next step, ListNet uses
the KL divergence between these two distributions to define its listwise ranking loss.
A neural network is then used as the model and gradient descent as the optimization
algorithm to learn the scoring function.

– RankNet [6]. RankNet is probably the first learning-to-rank algorithm used by com-
mercial search engines [19]. In RankNet, the loss function is defined on a pair of
documents, but the hypothesis is defined with the use of a scoring function. Given two
documents associated with a training query, a target probability is constructed based on
their ground truth labels. Then, the modeled probability Pu,v is defined based on the
difference between the scores of these two documents given by the scoring function.
Similar to ListNet, A neural network is used as the model.

– AdaRank [35]. The idea of AdaRank is similar to that of RankBoost except that it is a
list-wise approach. Hence, it directly maximizes any desired IR metric such as NDCG
and MAP whereas RankBoost’s objective is to minimize the pair-wise loss.

6.3 Research questions

A set of experiments are designed to address the following questions of the proposed
research:

– Can machine learning based models with a multitude of features outperform the content
based approach with a single feature? (Section 6.4.1)

– Can the proposed PCP model improve over a flat machine learning model such as
logistic regression by leveraging the missing features? (Section 6.4.1)

– How does PCP perform compared to the state-of-the-art learning to rank models?
(Section 6.4.2)

– What is theeffect of the personalization features in predicting user clicks? (Section 6.4.3)
– Do the clusters learned by PCP correspond to various types of jobs and job seekers in

the real world? Would the learned prediction models be different for different clusters?
(Section 6.4.4)

6.4 Results

6.4.1 PCP vs logistic regression vs non-machine learning based approach

In this section, we compare machine learning based approach with content matching based
approach. Specifically, we train a logistic regression model on all the 22 features shown in
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Figure 6 Precision-Recall curves for PCP, Logistic regression, and Doc score

Section 4.2 and compare it with the method that only uses the document relevance score
(Doc score). Figure 6 plots the Precision-Recall curve and Table 4 shows the corresponding
AUC scores. As we can see, logistic regression can gain 5.7% improvement over Doc score
in AUC. We also show the results of the proposed PCP model in Figure 6 and Table 4. PCP
has improved 22.3% in AUC over the baseline and substantially outperforms logistic regres-
sion. As pointed out in Section 6.1, PCP consists of multiple logistic regression models
for various types of users and jobs. The substantial performance gain by PCP over logis-
tic regression demonstrates the effectiveness of utilizing the patterns of missing features to
cluster user-job pairs.

The Precision-Recall curve in Figure 6 demonstrates that PCP generally achieves much
higher precision than the baselines when recall is small. Table 5 further shows the precision
of the three approaches at various recall levels ranging from 0.025 to 0.2. This range char-
acterizes high precision performance as specified in the TREC evaluation guideline [13],
which is important for the job recommendation application in this paper. As we can see in
the table, the gap in precision between PCP and logistic regression generally becomes larger
as recall goes smaller. The three methods shows very similar performance when recall level
is greater than 0.8.

6.4.2 PCP vs learning to rank

We further compare PCP with the state-of-the-art learning to rank (L2R) models. Specifi-
cally, five L2R models are chosen due to their effectiveness in various ranking tasks [19].
These five models cover the full spectrum of L2R models, i.e., pointwise: coordinate ascent

Table 4 AUC of PCP, logistic regression, and document relevance score (Doc score)

Doc score Logistic Regression PCP

0.5161 0.5455 (+5.7%) 0.6314 (+22.3%)

The numbers in the parenthesis show the relative improvement over the baseline of Doc score
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Table 5 Precision of PCP, Logistic regression (LR), and Doc score at various recall levels ranging from
0.025 to 0.2

Recall level

@0.025 @0.050 @0.075 @0.100 @0.125 @0.150 @0.175 @0.200

PCP 0.2989 0.2836 0.2597 0.2625 0.2461 0.2376 0.2274 0.2203

Doc score 0.2023 0.1944 0.1971 0.1970 0.1978 0.1863 0.1537 0.1387

LR 0.1911 0.1816 0.1740 0.1785 0.1687 0.1643 0.1601 0.1595

(CA); pairwise: RankNet and RankBoost; listwise: AdaRank and ListNet. Figure 7 plots the
Precision-Recall curve and Table 6 shows the corresponding AUC scores. As we can see,
PCP outperforms all the L2R models in AUC. These results are encouraging since we only
use logistic regression as the prediction model in PCP. In the future work, we will explore
the state-of-the-art L2R models in PCP and the performance could get further improved.
Among the various learning to rank models, only RankBoost yields comparable perfor-
mance with PCP. AdaRank and ListNet generate the lowest AUC scores, which indicates
that listwise L2R methods may not be suitable for this task.

Table 7 contains the results of the high precision region. In general, PCP, RankBoost,
and Coordinate Ascent achieve higher precision when recall level is lower. The other three
L2R methods yield stable but low precision performance over various recall levels. Similar
to the pattern shown in Table 5, the gap in precision between PCP and the other methods
generally becomes larger as recall goes smaller, which shows the advantage of PCP over
L2R in job recommendation.

6.4.3 Effect of user-specific features

In this section, we study the effect of the user-specific features in click prediction. We run
PCP on three sets of features: user-independent, user-specific, and all the features. The
user-independent features and user-specific features are introduced in Section 4.2.

Figure 7 Precision-Recall curves for PCP and various learning to rank models
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Table 6 AUC of PCP and
various learning to rank models AdaRank CA ListNet RankBoost RankNet PCP

0.493 0.525 0.499 0.491 0.536 0.631

Table 7 Precision of PCP and the state-of-the-art learning to rank methods at various recall levels ranging
from 0.025 to 0.2

Recall level

@0.025 @0.050 @0.075 @0.100 @0.125 @0.150 @0.175 @0.200

PCP 0.2989 0.2836 0.2597 0.2625 0.2461 0.2376 0.2274 0.2203

AdaRank 0.1444 0.1341 0.1318 0.1286 0.1264 0.1352 0.1320 0.1322

CA 0.2070 0.2046 0.1944 0.1904 0.1930 0.1900 0.1850 0.1822

ListNet 0.1188 0.1261 0.1246 0.1251 0.1201 0.1194 0.1209 0.1202

RankBoost 0.2892 0.2691 0.2508 0.2355 0.2244 0.2190 0.2205 0.2162

RankNet 0.1186 0.1181 0.1186 0.1177 0.1159 0.1168 0.1151 0.1159

Figure 8 Precision-Recall curves for PCP with various sets of features

Table 8 AUC of PCP with
various sets of features User-independent User-specific All

0.574 0.586 0.6314
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Table 9 Precision of PCP with various sets of features at various recall levels ranging from 0.025 to 0.2

Recall level

@0.025 @0.050 @0.075 @0.100 @0.125 @0.150 @0.175 @0.200

All 0.2989 0.2836 0.2597 0.2625 0.2461 0.2376 0.2274 0.2203

User-independent 0.1911 0.1874 0.1869 0.1834 0.1896 0.1864 0.1823 0.1805

User-specific 0.2662 0.2600 0.2198 0.2006 0.1964 0.1988 0.1954 0.1803

Figure 8 plots the Precision-Recall curve and Table 8 shows the corresponding AUC scores.
Table 9 contains the precision of PCP with various sets of features at various recall lev-
els ranging from 0.025 to 0.2. All these results show that the user-specific features alone
yield comparable performance with the user-independent, but if we combine both features,
the improvement could be substantial. These results show the effectiveness of considering
user-specific features in user click prediction.

6.4.4 Clusters and parameters

We obtain 7 clusters from PCP (on all the features) based on the BIC criterion in Section 5.
We investigate the individual clusters and the corresponding prediction models for the clus-
ters. We find these clusters indicate various types of jobs or job seekers. For example, we
analyze the users and jobs in Cluster 1 which accounts for 30% of the whole population.
We find that the users in this cluster are less likely to click on popular companies. The sim-
ilar situation happens to the job sources. As for the job locations they have clicked on, we
find they do not have any preference since the corresponding feature values are very low.
On the other hand, they tend to have a high score on the job queries and job query & title
features, which indicates that they have a strong preferences on job types. We also analyze
Cluster 5 which includes around 22% of the populations. We found that the feature scores
on the company name is relatively high, which means that users in this cluster may prefer
branded companies. It seems they do not like popular job sources and job queries since they
have low values on these features. Similarly, we find they have a strong preference on job
types but a weak one on job locations. Based on the similar analysis, the other clusters can
also be found to represent certain specific types of jobs and job seekers. We further look
at the parameters βzj learned for each cluster z and feature j . We find these weights are
very different between clusters, which indicates different prediction models were trained
for different clusters and thus leads to increased personalization for job seekers.

7 Conclusion and future work

In this paper, we ntroduce a real-world personalized job recommender system. A learning to
rank approach is used to recommend jobs for job seekers based on a set of user-independent
and user specific features. We further reveal the cluster structure of the missing features
and propose a probabilistic model to learn preferences of various types of users and jobs.
We conduct a comprehensive set of experiments to compare the proposed model with the
state-of-the-art learning to rank models and demonstrate its effectiveness.

In the future work, we will go beyond logistic regression and use other L2Rmodels as the
prediction model in the proposed clustering-prediction process. Consequently, the proposed
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models would become pairwise or listwise PCP instead of pointwise PCP presented in this
paper. The proposed approach can also be applied to other recommendation tasks in which
the data presents multimodality behaviors. Another research direction is to develop more
personalization features such as dwell time, query reformulation, and the sequence of clicks,
which can be aggregated and exploited in personalized job recommendation.
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