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a b s t r a c t 

Event-based social networks (EBSNs) have experienced increased popularity and rapid 

growth. Due to the huge volume of events available in EBSNs, event recommendation be- 

comes essential for users to find suitable events to attend. Different from classic recom- 

mendation scenarios (e.g., movies and books), a large majority of EBSN users join groups 

unified by a common interest, and events are organized by groups. In this paper, we pro- 

pose a dual-perspective latent factor model for group-aware event recommendation by us- 

ing two kinds of latent factors to model the dual effect of groups: one from the user- 

oriented perspective (e.g., topics of interest) and another from the event-oriented perspec- 

tive (e.g., event planning and organization). Pairwise learning is used to exploit unobserved 

RSVPs by modeling the individual probability of preference via Logistic and Probit sigmoid 

functions. These latent group factors alleviate the cold-start problems, which are perva- 

sive in event recommendation because events published in EBSNs are always in the future 

and many of them have little or no trace of historical attendance. The proposed model is 

flexible and we further incorporate additional contextual information such as event venue, 

event popularity, temporal influence and geographical distance. We conduct a comprehen- 

sive set of experiments on four datasets from Meetup in both regular and cold-start set- 

tings. The results demonstrate that the proposed approach yields substantial improvement 

over the state-of-the-art baselines by utilizing the dual latent factors of groups. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Event recommender systems have recently gained prevalence with the advent of Event-Based Social Networks (EBSNs) .

EBSNs allow like-minded people to gather together and socialize on a wide range of topics. Among all the elements in

EBSNs, events are the most significant one, which bridges the gap of online and offline interactions. As of December 2015,

Meetup , 1 one of the largest EBSNs today, has over 24 million members, with approximately 20 0,0 0 0 groups in 181 countries.

There are approximately 50 0,0 0 0 events organized every month on Meetup . The sheer volume of available events, especially

in large cities, often undermines the users’ ability to find the ones that best match their interests. Consequently, personalized

event recommendation is essential for overcoming such an information overload. 
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Users indicate their interest to attend an event by responding to a RSVP 2 for the event. Meetup generates over 3 million

RSVPs every month. The RSVP indicates a user’s preference on an event, and it allows future events to be recommended

to the user. At first glance, event recommendation is the same as recommending any other kind of items (e.g., movies and

books), with the only difference that the item here refers to an event. However, the key distinction is that EBSNs allow

users to organize themselves into groups that are created based on a topic of interest. The events are hosted by groups

at venues that are often in the vicinity of the local community. Such group structures are generally not available for other

recommendation problems. We can view the group information from a dual perspective: user-oriented and event-oriented.

The user-oriented perspective regards a group as a topic of interest so that users associated with a group are interested in

the same topic with the group. On the other hand, the event-oriented perspective views a group as an organizing entity.

The events organized by the same group have the same organizing style such as logistics, event planning, structure, quality

of talks, etc. These two perspectives complement each other and together they form a complete view of a group. For event

recommendation, an interesting question here is: how can we leverage this dual perspective of group information to provide

effective event recommendation? 

Moreover, optimal use of group information can largely alleviate the cold-start problems, which are pervasive in the

setting of event recommendation. New events and new users are constantly emerging in EBSNs. Many events published in

EBSNs have little or no trace of prior attendance because the events are always in the future and they are often short-lived.

Also, as EBSNs grow rapidly, there are many new users joining without record of historical attendance. By knowing the group

that organizes the new event, we can expect the organizing style of the event based on the event-oriented perspective of

groups. Similarly, by looking at the groups that the new user is associated with, we can infer the interests of the user based

on the user-oriented perspective of groups. Therefore, this dual perspective of groups can help address both new item and

new user cold-start problems. 

In EBSNs, a user may RSVP for an event in the affirmative by a positive response ( “yes”), or the user may provide a

negative response to an event with a RSVP as ( “no”). The numbers of positive responses and negative responses are largely

disproportional. Many users just ignore RSVPs if they are not interested in attending the events. Therefore, it is more de-

sirable to treat event recommendation as the top- N ranking task ( Kassak, Kompan, & Bielikova, 2016 ) than a binary rating

prediction problem. On the other hand, the absence of a response does not necessarily mean that the user is not interested

in the event. It may be that the user is not aware of the event, or that the user is unable to attend this event due to other

conflicts. Thus, the event recommendation model needs to take into account not only the positive and negative RSVPs, but

also the missing/unobserved RSVPs. 

Event recommendation is much less studied in the literature than traditional recommendation tasks such as movie and

book recommendations. To address the unique characteristics of event recommendation, we propose a dual-perspective

group-aware latent factor model. The proposed model utilizes pairwise ranking by taking unobserved RSVPs into account.

In addition to the typical user and item latent factors, two novel latent factors are used to model a group: one for its

user-oriented characteristics and another for its event-oriented characteristics. The influences of the groups on the user is

then modeled as the linear combination of the latent factors for the user-oriented characteristics of its groups. The experi-

mental results show that the proposed model outperforms the state-of-the-art baselines. The results also indicate that the

performance can be further improved when incorporating factors associated with event venue, event popularity, temporal

influence and geographical distance. It is worth noting that while adding more features helps, the group influence drives the

most performance gain and it is the focus of this work. The main contributions of this paper can be summarized as follows.

• We characterize two different perspectives of groups (user-oriented vs. event-oriented). We make use of these two com-

plementary perspectives in event recommendation, especially for addressing the cold-start problems. To the best of our

knowledge, no prior work has studied the dual-perspective of group influence on event recommendation. 
• We propose a probabilistic latent factor model by incorporating two different types of latent factors to represent the

user-oriented and event-oriented characteristics of groups. Pairwise learning is used to exploit unobserved RSVPs by

modeling the individual probability of preference via Logistic and Probit sigmoid functions. 
• The proposed model is flexible to further incorporate additional contextual information including event venue, event

popularity, temporal influence and geographical distance. We incorporate these additional parameters in our model and

study their impact on recommendations. 
• We thoroughly evaluate our proposed approach on four datasets from Meetup . The results demonstrate its effectiveness

compared to the state-of-the-art baselines. The source code and data will be made publicly available once the work is

published. 

The remainder of the paper is organized as follows. Section 2 covers the related work that is relevant to our study.

Section 3 provides data analysis that motivates our models. Section 4 introduces our event recommender models in detail,

and Section 5 discusses the experimental setup and the results of this study. Section 6 concludes with a summary and an

outline of the future work that will follow this study. 
2 RSVP is a French expression, which means “please respond”. 
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2. Related work 

2.1. Event recommendation in EBSNs 

Event recommendation has recently garnered increased attention with the advent of event-based social networks. A

study ( Liu et al., 2012 ) on EBSNs investigates unique and interesting characteristics of such networks by highlighting the

association between the online and offline social worlds for recommending new events. Qiao et al. (2014b) later extended

the work by proposing a Bayesian matrix factorization approach and employing social regularization factors inspired by

user interactions in an EBSN. In Qiao et al. (2014a) , a standard matrix factorization approach, which jointly models event,

location, and social relation is proposed; however, they ignore content and organizer information of events. Several studies

have utilized content information for event recommendation. Minkov, Charrow, Ledlie, Teller, and Jaakkola (2010) combine

content-based filtering and collaborative filtering to recommend scientific seminar events. User preferences for an event

were inferred based upon their preference for past events with similar content. Khrouf and Troncy (2013) leveraged an

enriched content-based representation of music related events by exploiting category information from DBpedia 3 about the

artists associated with each event. Zhang and Wang (2015) propose a collective Bayesian Poisson factorization to jointly

model user response to events, social relation, and content text. 

In addition to content modeling, some recent work found that contextual information is very useful in event recommen-

dation. Du et al. (2014) considered spatial and temporal context to predict event attendance. We have also included the

geographical distance and temporal influence in our proposed model, however, the primary emphasis of our work is the

dual-perspective of groups. de Macedo and Marinho (2014) conducted a large-scale analysis of several factors that impact

user preferences on events in an EBSN. They observed that users tend to provide RSVPs close to the occurrence of the events.

Macedo, Marinho, and Santos (2015) further proposed a context-aware approach by exploiting various contextual informa-

tion including social signals based on group memberships, location signals based on the users’ geographical preferences, and

temporal signals derived from the users’ time preferences. Chen and Sun (2016) proposed a social event recommendation

method that exploits a user’s social interaction relations and collaborative friendships. 

An existing study tackled a related problem in EBSNs: event-based group recommendation. Zhang, Wang, and

Feng (2013) exploited matrix factorization to model interactions between users and groups. By considering both explicit

features (e.g., location and social features) and implicit patterns, the proposed approach demonstrated improved perfor-

mance for group recommendations. This is different from our work as the objective of this study is to recommend groups

that a user can join in an EBSN, whereas our work utilizes the dual-perspective of groups to recommend events to the

user. A group recommender for movies is proposed based on content similarity and popularity ( Pera & Ng, 2013 ). A recent

study ( Pham, Li, Cong, & Zhang, 2015 ) proposed a general graph-based model to solve three recommendation tasks on EB-

SNs in one framework, namely recommending groups to users, recommending tags to groups, and recommending events to

users. The work models the rich information with a heterogeneous graph and considers the recommendation problem as a

query-dependent node proximity problem. Another study ( Jiang & Li, 2016 ) on Meetup investigated how social network, user

profiles and geo-locations affect user participation when the social event is held by a single organizer. Lu et al. (2016) pre-

sented a system that extracts events from multiple data modalities and recommends events related to the user’s ongoing

search based on previously selected attribute values and dimensions of events being viewed. 

While some recent work makes use of group memberships for event recommendation such as Macedo et al. (2015) ;

Zhang and Wang (2015) , the key distinction is that we systematically study the group influence from the dual perspective

of the user and event and propose a latent factor model to formally encode this dual view. 

2.2. Latent factor modeling 

Latent factor models, such as matrix factorization ( Koren, Bell, & Volinsky, 2009 ), probabilistic matrix factorization ( Mnih

& Salakhutdinov, 2007 ), and other variants ( Agarwal & Chen, 2009; Bell, Koren, & Volinsky, 2007; Cao, 2015; Koren, 2010;

Zhao, McAuley, & King, 2015 ) have demonstrated effectiveness in various recommendation tasks ( Hu, Sun, & Liu, 2014; Shi,

Zhao, Wang, Larson, & Hanjalic, 2012; Yao et al., 2015 ). Among various MF models proposed, SVD ++ ( Koren, 2008 ) is one of

the most widely used models. SVD ++ integrates the implicit feedback information from a user to items and the user latent

factors are complemented by the latent factors of the items to which the user has provided implicit feedback. 

Matrix factorization has been adapted to learn from relative pairwise preferences rather than absolute ones. One of the

most effective techniques is based on Bayesian Personalized Ranking (BPR) ( Rendle, Freudenthaler, Gantner, & Schmidt-

hieme, 2009 ), which has been shown to provide strong results in many recommendation tasks. Several extensions of

BPR include pairwise interaction tensor factorization ( Rendle & Schmidt-Thieme, 2010 ), multi-relational matrix factorization

( Krohn-Grimberghe, Drumond, Freudenthaler, & Schmidt-Thieme, 2012 ), richer interactions among users ( Pan & Chen, 2013 ),

and non-uniformly sampled items ( Gantner, Drumond, Freudenthaler, & Schmidt-Thieme, 2012 ). Other pairwise learning

based collaborative filtering models include EigenRank ( Liu & Yang, 2008 ) and probabilistic latent preference analysis
3 http://wiki.dbpedia.org . 

http://wiki.dbpedia.org
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Fig. 1. User-group and user-venue relation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( Liu, Zhao, & Yang, 2009 ). A pairwise ranking based geographical factorization method was recently proposed ( Li, Cong, Li,

Pham, & Krishnaswamy, 2015 ) for point-of-interest recommendation. We also utilize the pairwise ranking approach in our

work, but we address the task of social event recommendation with the focus on utilizing the dual perspective of groups.

Moreover, we use both logistic and Probit functions to model the pairwise preferences. 

2.3. Cold-start problem 

Cold-start is a prevalent problem in recommender systems as it is generally difficult for a model to handle new users and

items. The cold-start problem is often alleviated by utilizing content information ( Formoso, FernaNdez, Cacheda, & Carneiro,

2013 ). Word-based similarity methods ( Pazzani & Billsus, 2007 ) recommend items based on textual content similarity in

word vector space. Collaborative Topic Regression (CTR) couples a matrix factorization model with probabilistic topic mod-

eling to generalize to unseen items ( Wang & Blei, 2011 ). Collective matrix factorization (CMF) ( Singh & Gordon, 2008 ) simul-

taneously factorizes both rating matrix and content matrix with shared item latent factors. SVDFeature ( Chen et al., 2012 )

combines content features with collaborative filtering. The latent factors are integrated with user, item, and global features. 

In Du et al. (2014) , topic modeling ( Blei, Ng, & Jordan, 2003 ) is utilized to learn topics of users based on the content of

their attended events, and then the similarity between topic factor of user and events is calculated, which is an important

component of their method. Recently, Zhang and Wang (2015) explicitly addressed the cold-start problem in event recom-

mendation by modeling the event content text. Liao and Chang (2016) proposed a rough set based association rule approach.

Sun, Wang, Cheng, and Fu (2015) integrated sentiment information from affective texts into recommendation models. The

cold-start problem in tag recommendation is studied in Martins, Belém, Almeida, and Gonçalves (2016) . Our work is differ-

ent from the existing work in that we do not use any textual content information to tackle the cold-start problem. Instead,

we formally model group information from the user and event perspectives and demonstrate the advantage of utilizing the

dual-view of groups in the cold-start settings. 

3. Data analysis 

In this section, we provide an analysis of the real-world datasets that we collected from Meetup for four cities in U.S.:

New York, San Francisco, Washington DC and Chicago, which are among the most active cities for the Meetup community. 4 

The detailed statistics and information of the datasets are presented in Section 5.1 . 

Fig. 1 (a) shows the cumulative percentage of users who join a given number of groups, i.e., number of groups ( n ) vs.

the percentage of users joining less or equal than n groups. This information is depicted for all four cities and a consistent
4 http://priceonomics.com/what- meetups- tell- us- about- america/ . 

http://priceonomics.com/what-meetups-tell-us-about-america/
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Table 1 

Average number of groups per user in four cities. 

New York San Francisco Washington DC Chicago 

9 .54 9 .88 8 .63 7 .78 

Table 2 

Notations. 

m, n, f Total number of users, events, and latent factors, respectively 

G u The set of groups that user u belongs to 

( u, i, j ) A preference triplet indicating user u prefers event i over event j 

D s The set that contains all the preference triplets 

K The set of ( u, i ) pairs with known ratings 

s u, i Ranking score of event i for user u 

x u, i, j Difference of ranking scores between event i and j for user u 

p u Latent factors for user u 

q i Latent factors for event i 

r g User-oriented latent factor for group g 

t g Event-oriented latent factor for group g that organizes event 

v i Latent factor for venue that host event i 

y i Event-oriented latent factor related to the day of the week for event i 

z i Event-oriented latent factor related to the period of the day for event i 

c i Popularity for event i 

d u, i Normalized geo-distance between user u and event i 

βc , βd Event popularity bias and Geo-distance bias 

λ, γ Regularization parameters for latent factors and bias respectively 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pattern emerges from the data. In all four cities, approximately 80% of the users have joined at least one group. Around

5% of the users join one group and a significant majority join between 1 and 30 groups. There are certain users who have

joined more than 30 groups, but the percentage of such users is very small. The group membership in the user-base is an

important indication that group is an essential feature for event recommendation. Table 1 provides the average number of

groups per user in the four cities. We observe from our dataset that in all four cities, there were a couple of users who

had joined 200 groups, which is the maximum allowed by Meetup . There is also a remarkable consistency in the average

number of groups per user in the four cities, which is in the range of 7–10. We also observed that all events in our dataset

are organized by a group, i.e. the group information is always present in the RSVP. Therefore, a group is a critical contextual

parameter that is associated with the majority of users and all events. 

We also analyzed the data collected for the four cities with respect to relationship between users and venues. As indi-

cated in Fig. 1 (b), most users usually attend events at a limited number of venues, which means that there is an implicit

relationship between the user and venue. To gain a further insight into the user-venue relationship, we look at a random

user in the New York dataset. The user has three RSVPs that are for three different venues. The venues associated with the

user’s RSVPs are: 230 Fifth (bar and lounge), Madison Square Tavern (restaurant and event center with a full-scale bar) and

Croton Reservoir Tavern (up-scale restaurant and bar that hosts private parties). The three venues associated with the user

are similar based on the fact that all of them are upscale restaurants with bars, and two of them host private events. This

observation indicates that the characteristics of the venue may affect the user’s RSVP for the event, which motivates us to

include the event venue as one of the parameters into our model in Section 4.3 . 

4. Event recommendation models 

As discussed earlier, we tackle the task of event recommendation as the top- N item recommendation by providing a

user with a ranked list of events. Our proposed approach is based on the latent factor model with pairwise ranking. In the

following subsections, we present our proposed model by considering the dual role of group influence. We then incorpo-

rate contextual information into the model, such as venue, event popularity, temporal influence and geographical distance.

Table 2 lists the notations used in this paper. 

4.1. Pairwise ranking 

In EBSNs, most users only respond to a small portion of events since they may only be aware of a few events. In addi-

tion, there exist much more positive examples than negative ones. Many users just ignore RSVPs if they are not interested

in attending the events. Consequently, there are many unobserved user-event pairs, which are a mixture of real negative

feedback (the user is not interested in attending) and missing values (the user might attend if she is aware of the event).

Therefore, instead of performing a point-wise RSVP prediction, we use a pairwise ranking approach to learn the preferences

of users on events. 



564 Y. Jhamb, Y. Fang / Information Processing and Management 53 (2017) 559–576 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formally, given a user u , if item i is preferred over item j , we have a preference instance ( u, i, j ) ∈ D S where D S is the

whole set of preference instances. In EBSNs, the preference instances can be derived from three types of relations between

items given user u : (1) RSVP “Yes” is preferred over RSVP “No”; (2) RSVP “Yes” is preferred over unobserved RSVP; (3)

unobserved RSVP of an event organized by the user’s group is preferred over RSVP “No”. Let s ( u, i ) represent the ranking

score of item i for user u and denote: 

x (u, i, j) = s (u, i ) − s (u, j) 

The pairwise ranking optimization criterion is the log likelihood of the observed preferences, which can then be defined as

max 
�

L (�) = 

∑ 

(u,i, j) ∈ D S 
log σ (x (u, i, j)) − Reg(�) (1) 

where σ ( x ) defines the probability of pairwise preference, i.e., the probability of item i being preferred over j given their

ranking score difference x ( u, i, j ). σ ( x ) is a monotonically increasing function with respective to the argument x ( u, i, j ). The

intuitive explanation of Eq. (1) is that if item i is preferred over j for user u , the difference between their ranking scores

s ( u, i ) and s ( u, j ) is maximized since log σ ( x ) is a monotonically increasing function. As a result, item i is more preferable

than item j . In the above equation, � is the set of all model parameters and Reg ( �) is a regularization term to prevent

overfitting. In this paper, we use L2 regularization, since the L2-regularization terms are differentiable, allowing us to apply

gradient-based optimization methods. 

Since σ ( x ) is a probability function while being monotonically increasing, the Logistic function defined as follows is a

natural choice: 

σ (x ) = 

1 

1 + exp (−x ) 

In fact, the choice of the Logistic function in Eq. (1) would lead to the widely used Bayesian Personalized Ranking (BPR)

optimization criterion ( Rendle et al., 2009 ) in recommender systems. The objective function of BPR is shown as Eq. (3) in

Table 3 . Theoretically, optimizing for the above BPR is a smoothed version of optimizing for the well-known ranking measure

Area under the ROC Curve (AUC) by approximating the non-differentiable Heaviside function by the differentiable Logistic

function σ ( x ). See Rendle et al. (2009) for a more detailed explanation. On the other hand, the use of logistic function to

model pairwise preference probability is a type of Bradley-Terry models ( Agresti & Kateri, 2014 ) where exponential score

functions are used. 

Alternatively, we can model the pairwise preference probability σ ( x ) by the Probit function which is a popular specifi-

cation for an ordinal or a binary response model in Statistics ( McCullagh & Nelder, 1989 ). The Logistic and Probit are both

sigmoid functions with a domain between 0 and 1, which makes them both quantile functions - i.e., inverses of the cumu-

lative distribution function (CDF) of a probability distribution. In fact, the Logistic is the quantile function of the Logistic

distribution, while the Probit is the quantile function of the Gaussian distribution defined as follows: 

σ (x ) = �(x ) = 

∫ x 

−∞ 

N (x ) dx = 

∫ x 

−∞ 

1 

σ
√ 

2 π
exp 

(
− (x − μ) 2 

2 σ 2 

)
dx (2) 

where �( x ) is the cumulative distribution function of Gaussian distribution. N (x ) is the probability density function of the

Gaussian distribution. In this paper, we set μ = 0 and σ 2 = 1 yielding the standard Gaussian distribution. Both Logistic

and Probit functions have a similar ‘S’ shape. The Logistic has a slightly flatter tail while the Probit curve approaches the

axes more quickly. In the Probit function, if we increase the variance the curve will become flatter and elongated. The

experiments in Section 5 compare the performance of the two variants of the proposed model. 

4.2. Group-aware latent factor model 

The latent factor model is one of the most successful collaborative filtering models, which jointly maps the users and

items into a shared latent space of a much lower dimensionality. Here we use latent factor model to characterize the ranking

scores s ( u, i ) and s ( u, j ) in Eq. (1) . Formally, users and events are projected into a shared f-dimensional latent space, where

f � min (m, n ) : m is the number of users and n is the number of events. In the most basic form, user u is mapped to a

latent factor vector p u ∈ R 

f , and event i is mapped to a latent factor vector q i ∈ R 

f . The inner product of p u and q i is used

to compute the predicted ranking score of user u on event i such as s u,i = p 

T 
u q i . Similarly, we have s u, j = p 

T 
u q j for event j

where q j is the latent factor for j . 

Based on our data analysis in Section 3 , a large majority of users are associated with at least one group and each event

is organized by one group. These observations suggest that considering the group influence may improve the accuracy of

event recommendation. We can view the group influence from a dual perspective: user-oriented and event-oriented. The

user-oriented perspective regards a group as a topic of interest so that users associated with a group are interested in the

same topic with the group. On the other hand, the event-oriented perspective views a group as an organizing entity. The

events organized by the same group have the same organizing style such as logistics, event planning, structure, quality of

talks, etc. These two perspectives complement each other and together they form a complete view of a group. 
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Table 3 

Objective functions L (�) for BPR, GLFM, GLFM-V, GLFM-VPD, and GLFM-VPDT, respectively. 

max 
P,Q 

∑ 

(u,i, j) ∈ D S 
log σ (x (u, i, j)) − λ

( ∑ 

u 

‖ p u ‖ 2 2 + 

∑ 

i 

‖ q i ‖ 2 2 

) 

(3) 

max 
P,Q,R,T 

∑ 

(u,i, j) ∈ D S 
log σ (x (u, i, j)) − λ

( ∑ 

u 

‖ p u ‖ 2 2 + 

∑ 

i 

‖ q i ‖ 2 2 + 

∑ 

g 

‖ r g ‖ 2 2 + 

∑ 

i 

‖ t g ‖ 2 2 

) 

(4) 

max 
P,Q,R,T 

∑ 

(u,i, j) ∈ D S 
log σ (x (u, i, j)) − λ

( ∑ 

u 

‖ p u ‖ 2 2 + 

∑ 

i 

‖ q i ‖ 2 2 + 

∑ 

g 

‖ r g ‖ 2 2 + 

∑ 

i 

‖ t g ‖ 2 2 + 

∑ 

i 

‖ v i ‖ 2 2 

) 

(5) 

max 
P,Q,R,T 

∑ 

(u,i, j) ∈ D S 
log σ (x (u, i, j)) − λ

( ∑ 

u 

‖ p u ‖ 2 2 + 

∑ 

i 

‖ q i ‖ 2 2 + 

∑ 

g 

‖ r g ‖ 2 2 + 

∑ 

i 

‖ t g ‖ 2 2 + 

∑ 

i 

‖ v i ‖ 2 2 

) 

− γ
(
βc 

2 + βd 
2 
)

(6) 

max 
P,Q,R,T,Y,Z 

∑ 

(u,i, j) ∈ D S 
log σ (x (u, i, j)) − λ

( ∑ 

u 

‖ p u ‖ 2 2 + 

∑ 

i 

‖ q i ‖ 2 2 + 

∑ 

g 

‖ r g ‖ 2 2 + 

∑ 

i 

‖ t g ‖ 2 2 + 

∑ 

i 

‖ v i ‖ 2 2 + 

∑ 

i 

‖ y i ‖ 2 2 + 

∑ 

i 

‖ z i ‖ 2 2 

) 

− γ
(
βc 

2 + βd 
2 
) (7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We propose the group-aware latent factor model (GLFM) to model user preference by encoding the dual perspective of

group influence. Mathematically, for group g , we use r g and t g to model its user-oriented and event-oriented characteristics,

respectively. Since a user could be a member of multiple groups, we average all the user-oriented latent vectors r g of these

groups and use it to influence the user latent factor. Similarly, we use the event-oriented latent factor t g of the group that

organizes the event to influence the event latent factor. Let G u be the set of groups that user u belongs to. Let g ∈ G u be

a specific group that includes user u . Let t g denote the latent factor of the group that organizes event i . Incorporated with

influence from groups, the predicted ranking score for event i given user u is now computed with both r g and t g , shown as

follows. 

s u,i = 

( 

p u + 

1 

| G u | 
∑ 

g∈ G u 
r g 

) T 

(q i + t g ) (8)

The ranking score s u, j for event j given user u can be similarly calculated. The objective function is shown as Eq. (4) in

Table 3 . 

It is worth noting that by considering the group information, GLFM addresses the cold-start problems for both new

events and new users that do not appear in training data. When a new event i is just released in an EBSN, we do not have

any information about q i , but the event-oriented group latent factor t g is not empty since we know which group organizes

the event. The latent factor of the group is learned from the training data. Intuitively, if the group has an excellent track

record of organizing events like having great talks and good event planning, users may prefer the events organized by this

group. Similarly, when a new user u has not responded to any RSVPs, we do not have the latent factor p u , but we may know

what groups she is associated with and thus can use 1 
| G u | 

∑ 

g∈ G u r g for prediction/ranking. These latent factors capture the

user-oriented characteristics of the groups such as topics of interest. We can view p u + 

1 
| G u | 

∑ 

g∈ G u r g as a kind of smoothed

version of user latent factor smoothed by the groups that the user belongs to. The group influence serves as the background

model and is crucial when p u is empty. Similarly, q i + t g can be viewed as the smoothed version of event latent factor. With

these latent group factors, we can tackle new users and new items. 

4.3. Event venue 

Each event is held at a venue. Some groups often organize events at the same or a similar venue, indicating a correlation

between the event group and the event venue. The event venue may affect the attendance of the event. For example, some

venues have a great facility, or they are at a convenient location, which can attract more people in general. Some venues

can accommodate special needs of certain users such as being pets or kids friendly. Some venues are specialized for certain

types of events such as ballroom dance or tennis games. 

We introduce venue latent factors to exploit event venues for more accurate event recommendation. We treat the venue

as an attribute of the event and augment our model with a latent factor v i for the venue that hosts event i . The model

that includes the influence of venue is GLFM-V. By incorporating the venue influence, the predicted ranking score of event
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i given user u is now defined as 

s u,i = 

( 

p u + 

1 

| G u | 
∑ 

g∈ G u 
r g 

) T 

(q i + t g + v i ) (9) 

The objective function is shown as Eq. (5) in Table 3 . 

4.4. Event popularity and geographical distance 

In EBSNs, some events have general themes such as entrepreneurship, while others have niche topics such as Minecraft . A

hypothesis is users may be more likely to RSVP on popular/mainstream events than on unpopular/niche events. We measure

the event popularity by the number of people who RSVP for the event. An event that has a higher number of RSVPs is

considered to be more popular. We include event popularity as a ranking bias and perform feature scaling while considering

this in conjunction with the other features. By incorporating the popularity bias, the predicted ranking score of event i given

user u is as follows: 

s u,i = 

( 

p u + 

1 

| G u | 
∑ 

g∈ G u 
r g 

) T 

(q i + t g + v i ) + βc c i (10) 

where c i is the popularity bias for event i and βc is the weight of the bias which is learned from the training data. 

Geographical distance is another important consideration while recommending products and services that require the 

user to travel to the location. We incorporate the geographical distance in our model by computing the Haversine distance

( Shumaker & Sinnott, 1984 ) from the user latitude-longitude and venue latitude-longitude data. We calculate the logarithm

of this distance and model it as a ranking bias. 

s u,i = 

( 

p u + 

1 

| G u | 
∑ 

g∈ G u 
r g 

) T 

(q i + t g + v i ) + βc c i + βu d ui (11) 

where d u, i is the normalized logarithm geo-distance between user u and venue that hosts event i , and βu is the geo-

distance bias parameter associated with the user that is learned from the training data. The objective function is provided

in Eq. (6) in Table 3 . In the equation, γ is the regularization parameter used to prevent overfitting. The model that augments

the group and venue latent factors with the event popularity and geo-distance bias is called GLFM-VPD. 

4.5. Temporal influence 

Events are organized during certain days of the week and at certain times of the day. Some events are organized in

the day between 9am and 5pm, whereas others are organized in the evening after 5pm, so people can attend after work.

Events that are targeted towards working individuals are generally organized on the weekends. We incorporate the temporal

influence into our model using two types of latent time factors: one for the day of the week, y i , which is associated with

the event i , and another for the period of the day, z i , for event i . The day of the week is derived from weekday that the

event is scheduled on, whereas the period of the day is mapped to one of two time-slots: “Day” if the event time is between

9am and 5pm, and “Evening” is the event is scheduled after 5pm. 

With the inclusion of the temporal influence parameters, the predicted ranking score of event i given user u is now

defined as 

s u,i = 

( 

p u + 

1 

| G u | 
∑ 

g∈ G u 
r g 

) T 

(q i + t g + v i + y i + z i ) + βc c i + βu d ui (12)

where the y i parameter that models the influence of the day of the week, and the z i models the influence of the period of

the day. The objective function is provided in Eq. (7) in Table 3 with the model denoted by GLFM-VPDT. 

4.6. Parameter estimation 

We estimate the model parameters of the proposed models by using stochastic gradient descent (SGD) algorithm

( Bottou, 2010 ). In this case, an update is performed for each preference instance ( u, i, j ) ∈ D s . Since we deal with max-

imization problems, the parameters are learned by moving in the direction of the gradient with a learning rate α in an

iterative manner as follows. 

� ← � − α
∂L 

∂�
(13) 
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Table 4 

Stochastic gradient descent updates for GLFM-VPDT. 

p u ← p u + α ·
(
ω u,i, j ·

(
(q i + t g(i ) + v i + y i + z i ) − (q j + t g( j) + v j + y j + z j ) 

)
− λ · p u 

)
∀ g ∈ G u : r g ← r g + α ·

(
ω u,i, j ·

(
(q i + t g(i ) + v i + y i + z i ) − (q j + t g( j) + v j + y j + z j ) 

)
− λ · r g 

)
q i ← q i + α ·

(
ω u,i, j · (p u + 

∑ 

ug r g ) − λ · q i 
)

q j ← q j + α ·
(
ω u,i, j · (−p u −

∑ 

ug r g ) − λ · q j 
)

t g(i ) ← t g(i ) + α ·
(
ω u,i, j · (p u + 

∑ 

ug r g ) − λ · t g(i ) 

)
t g( j) ← t g( j) + α ·

(
ω u,i, j · (−p u −

∑ 

ug r g ) − λ · t g( j) 

)
v i ← v i + α ·

(
ω u,i, j · (p u + 

∑ 

ug r g ) − λ · v i 
)

v j ← v j + α ·
(
ω u,i, j · (−p u −

∑ 

ug r g ) − λ · v j 
)

y i ← y i + α ·
(
ω u,i, j · (p u + 

∑ 

ug r g ) − λ · y i 
)

y j ← y j + α ·
(
ω u,i, j · (−p u −

∑ 

ug r g ) − λ · y j 
)

z i ← z i + α ·
(
ω u,i, j · (p u + 

∑ 

ug r g ) − λ · z i 
)

z j ← z j + α ·
(
ω u,i, j · (−p u −

∑ 

ug r g ) − λ · z j 
)

for i , βc ← βc + α ·
(
ω u,i, j · (c i + c j ) − γ · βc 

)
βd ← βd + α ·

(
ω u,i, j · (d ui + d u j ) − γ · βd 

)
for j , βc ← βc + α ·

(
ω u,i, j · (−c i − c j ) − γ · βc 

)
βd ← βd + α ·

(
ω u,i, j · (−d ui − d u j ) − γ · βd 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By plugging our pairwise ranking optimization criterion in Eq. (1) into Eq. (13) , we obtain 

� ← � − α

(
1 

σ (x (u, i, j)) 

∂σ (x (u, i, j)) 

∂�
− ∂Reg(�) 

∂�

)
(14)

The algorithm repeatedly iterates over the training data and updates the model parameters in each iteration until con-

vergence. Based on Eq. (14) , we can derive the SGD updates for GLFM-VPDT as shown in Table 4 . The updates for other

proposed latent factor models (e.g., GLFM, GLFM-V, GLFM-VPD) are similar. In the table, ω u,i,j is defined in order to simplify

the notation. For the model based on the Logistic function, 

ω u,i, j = 

e −x (u,i, j) 

1 + e −x (u,i, j) 

For the model based on the Probit function: 

ω u,i, j = 

N (x (u, i, j)) 

�(x (u, i, j)) 

where N (·) and �( ·) are defined in Eq. (2) . 

As introduced in Section 4.1 , the preference instances can be derived from three types of relations between items given

a user based on RSVP “Yes”, RSVP “No”’, and missing RSVP. Thus, we generate the preference instances ( u, i, j ) from the

training data based on the following strategy: 

• If the user has any positive RSVPs, we randomly sample a RSVP “Yes” and then randomly sample a RSVP “No” from the

same user to form the preference pair. 
• If there is no negative RSVP for the user, we randomly sample a missing RSVP from the user. This pairing is based on

the assumption that a RSVP with unknown preference is negative when paired with a true positive example. 
• If the user has no positive RSVP, we pair a random unknown RSVP of an event organized by one of the user’s groups

with a random negative RSVP from the same user. This pairing is based on the assumption that an unknown preference

for a RSVP of an event organized by a group that the user belongs to, is preferred over a true negative example. 

Section 5.3.3 investigates an alternative preference generation strategy without assuming that the unobserved RSVPs are

preferred over the observed RSVP “No”. Once a sufficient number of preference instances are sampled, we randomly shuffle

them to avoid bias for certain users. The model is then trained on these permuted instances by SGD. The learned model

parameters are then applied to the test users for the top- N event recommendation based on descending order of the ranking

score s u,i . 

5. Experiments 

We evaluate the proposed dual perspective group-aware model and its variants on real-world datasets collected from

Meetup . We compare the results of our models against the state-of-the-art recommendation techniques. In addition to per-

forming a comparison in regular settings, we also compare our models with the baseline methods in cold-start scenarios.

We present the results in this section and discuss our findings in detail. 
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Table 5 

Data statistics for four cities. 

City RSVPs Sparsity Positive Negative Users Events Groups Venues 

New York 50,150 0.9989 49,163 987 1397 35,179 1326 1696 

San Francisco 24,923 0.9984 23,848 1075 1147 13,938 748 1075 

DC 23,688 0.9968 23,205 483 635 11,906 503 845 

Chicago 12,598 0.9976 11,782 816 599 8819 433 853 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Data collection 

As introduced in Section 3 , we collected RSVP data from Meetup for events organized in four cities in the U.S.: New

York, San Francisco, Washington DC and Chicago. The RSVP data was collected by using the Meetup API 5 between the time

periods January 2016 and May 2016. We filtered the dataset for each city to retain only RSVPs associated with users having

greater than 5 RSVPs. The statistics of the data are given in Table 5 . These four cities represent different geographic regions

of the U.S. and they have varied statistics as shown in the table. 

Table 5 also provides statistics of the RSVPs, including the breakup of the RSVPs into the positive and negative ones.

We observe that for all four cities, the positive RSVPs far exceed the negative ones. This indicates that users generally

respond when they are interested in attending an event. Users who intend to respond with a negative or no RSVP for an

event generally ignore the event and do not provide a response. This observation justifies our pairwise learning approach,

which utilizes both negative and unobserved RSVPs by forming preference pairs instead of performing pointwise prediction.

Section 5.3 includes the comparison of the experimental results of different methods. 

5.2. Experimental setup 

We sorted the data in chronological order of event time so that we can train the model on past events and recommend

future ones. The sorted datasets are then split to use 80% as the training set and 20% as the test set for each city. We apply

the sampling strategy introduced in Section 4.6 to generate preference instances for model training. The learned model

parameters are applied to the test users to generate a ranking score for the events for each user based on s u, i . The evaluation

metrics include P @5, P @10, R @5, R @10, NDCG @5, NDCG @10, and MAP @10 ( Manning, Raghavan, Schütze et al., 2008 ). These

are common metrics for top- N recommendations. 

We compare the proposed models with the following baseline methods. We use Librec . 6 a widely used recommender

library, to obtain results for the baseline methods. We set both the regularization parameters λ and γ to 0.025 and the

learning rate in SGD is α = 0 . 05 . We use the same parameter values with the existing methods (to the extent possible) as

we have used with the proposed methods. 

• Item Mean : The ranking score of an event is predicted on the basis of the mean of the event RSVPs in the training set. 
• User KNN ( Breese, Heckerman, & Kadie, 1998 ) : User-based K -Nearest Neighborhood collaborative filtering method that

predicts the user preference based on the similarity with the K nearest users calculated using Pearson’s correlation. 
• Item KNN ( Sarwar, Karypis, Konstan, & Riedl, 2001 ) : Item-based K -Nearest Neighborhood collaborative filtering method

that predicts the user preference based on the similarity with the K nearest items calculated using Pearson’s correlation.
• Group-Membership : This is a naive method that utilizes the user group membership data to recommend events organized

by the groups that the users belong to. If the user does not belong to any group, then this model recommends the most

popular events (based on the RSVP count) to the user. The user group membership data is obtained using the Meetup

API. 
• Biased-MF ( Koren et al., 2009 ) : Basic matrix factorization that includes global mean, user bias and event bias. 
• BPR-MF ( Rendle et al., 2009 ) : Bayesian Personalized Ranking method that utilizes pairwise loss to provide top- N item

recommendation using matrix factorization (MF). 
• SVD ++ ( Koren, 2008 ) : A state-of-the-art matrix factorization method that incorporates implicit feedback from the user

for a superior accuracy. 
• SVDFeature: 7 State-of-the-art model that incorporates domain-specific features to SVD ++ . We configure this toolkit to

utilize the group and venue information from the dataset. We indicate the group as both a user and event feature, and

the venue as only an event feature. 

We evaluate the following proposed models by integrating influences from multiple factors: group-aware (G), venue

influence (V), popularity influence (P), distance influence (D) and temporal influence (T). Our models are also varied with

the choice of the pairwise probability functions: Logistic (Logit) or Probit. 
5 http://www.meetup.com/meetup _ api/ . 
6 http://www.librec.net . 
7 http://svdfeature.apexlab.org/ . 

http://www.meetup.com/meetup_api/
http://www.librec.net
http://svdfeature.apexlab.org/
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• LFM-V-Logit : This model incorporates the influence of only the event venue (V) into the BPR with matrix factorization

(BPR-MF). The logistic function is used for the pairwise ranking. 
• LFM-T-Logit : This model incorporates the temporal influence into the BPR with matrix factorization (BPR-MF), which

utilizes the logistic function. 
• LFM-P-Logit : This model incorporates the influence of the event popularity (P) into the BPR with matrix factorization

(BPR-MF), which utilizes the logistic function. 
• LFM-D-Logit : This model incorporates the influence of the geographical distance (D) into the BPR with matrix factoriza-

tion (BPR-MF), which utilizes the logistic function. 
• GLFM-Logit : This model considers the influence of the dual perspective of groups (G) and uses the logistic function for

the pairwise ranking. 
• GLFM-V-Logit : This model considers the dual-perspective groups (G) and the influence of event venue (V) with the logistic

function. 
• GLFM-VPD-Logit : This model includes the dual perspective of groups (G), event venue (V), event popularity (P) and geo-

graphical distance (D) with the logistic pairwise function. 
• GLFM-VPDT-Logit : This model includes all the information – dual perspective of groups (G), event venue (V), event pop-

ularity (P), geographical distance (D), and temporal influence (T) – with the logistic pairwise function. 
• LFM-V-Probit : This model is similar to LFM-V-Logit but with the Probit pairwise probability function. 
• LFM-T-Probit : This model is similar to LFM-T-Logit but with the Probit pairwise probability function. 
• LFM-P-Probit : This model is similar to LFM-P-Logit but with the Probit pairwise probability function. 
• LFM-D-Probit : This model is similar to LFM-D-Logit but with the Probit pairwise probability function. 
• GLFM-Probit : This model is similar to GLFM-Logit but with the Probit pairwise probability function. 
• GLFM-V-Probit : This model is similar to GLFM-V-Logit but with the Probit pairwise probability function. 
• GLFM-VPD-Probit : This model is similar to GLFM-VPD-Logit but with the Probit pairwise probability function. 
• GLFM-VPDT-Probit : This model is similar to GLFM-VPDT-Logit but with the Probit pairwise probability function. 
• GLFM-VPDT-Pointwise : This model includes the dual perspective of group (G), event venue (V), event popularity (P), ge-

ographical distance (D), and temporal influence (T), utilizing a point-wise loss function. The ranking score for the user

u on the event i is as follows. The objective function considers the actual RSVP of the user a u, i , with the value 1 if the

user provided an affirmative RSVP, and 0 for a negative or missing RSVP. 

s u,i = 

( 

p u + 

1 

| G u | 
∑ 

g∈ G u 
r g 

) T 

(q i + t g + v i + y i + z i ) + βc c i + βu d ui (15)

min 

P,Q,R,T,Y,Z 

∑ 

(u,i ) ∈ K 
(s u,i − a u,i ) 

2 + λ
(∑ 

u 

‖ p u ‖ 

2 
2 + 

∑ 

i 

‖ q i ‖ 

2 
2 + 

∑ 

g 

‖ r g ‖ 

2 
2 + 

∑ 

i 

‖ t g ‖ 

2 
2 + 

∑ 

i 

‖ v i ‖ 

2 
2 + 

∑ 

i 

‖ y i ‖ 

2 
2 + 

∑ 

i 

‖ z i ‖ 

2 
2 

)

+ γ
(
βc 

2 + βd 
2 
)

(16)

5.3. Results 

In the following subsections, we first compare the proposed models with the baseline methods. The effect of dimension-

ality of latent factor space is also investigated. We then conduct experiments in cold-start settings to evaluate the proposed

methods. 

5.3.1. Baseline comparisons 

The results of baseline comparisons are presented in Tables 6–9 for the four cities, respectively. The best results in each

evaluation metric are highlighted in boldface. From the tables, we can make the following observations. 

• The proposed dual-perspective group-aware models (i.e., GLFM-Logit, GLFM-Probit, GLFM-V-Logit, GLFM-V-Probit, GLFM-

VPD-Logit, GLFM-VPD-Probit, GLFM-VPDT-Logit, GLFM-VPDT-Probit ) substantially outperform the methods that do not con-

sider group information. The best results in all the four cities are achieved by the proposed latent factor models with a

large margin of improvement. 
• Excluding the proposed group-aware models, the venue-aware latent factor models ( LFM-V ) perform the best. These

results validate our observation in Section 3 that there may exist a correlation between the user and venue. Event venue

is an important consideration while deciding to attend an event, as groups generally host events at the same or similar

venues. 
• The latent factor models that only consider the temporal influence, event popularity and geographical distance ( LFM-T,

LFM-P, LFM-D ) yield mediocre results for all the four cities. Out of the three models, the model with the temporal influ-

ence yields the best results, followed by the model that considered the event popularity and geographical distance. The
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Table 6 

Experimental results of baseline comparisons for New York. 

Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10 

Item Mean 0.0062 0.0033 0.0158 0.0164 0.0142 0.0163 0.0138 

UserKNN 0.0187 0.0102 0.0403 0.0428 0.0372 0.0419 0.0336 

ItemKNN 0.0445 0.0257 0.0731 0.0785 0.0679 0.0728 0.0558 

Biased-MF 0.0 0 02 0.0 0 02 0.0 0 09 0.0017 0.0 0 07 0.0 0 08 0.0 0 04 

BPR-MF 0.2340 0.1743 0.2559 0.3242 0.2819 0.3004 0.2594 

SVD ++ 0.0 0 03 0.0 0 03 0.0015 0.0024 0.0011 0.0012 0.0 0 08 

SVDFeature 0.1606 0.1597 0.1877 0.2030 0.2223 0.2478 0.1505 

Group-Membership 0.4063 0.3806 0.2155 0.3581 0.3791 0.4247 0.4029 

GLFM-VPDT-Pointwise 0.0036 0.0030 0.0022 0.0050 0.0011 0.0013 0.0023 

LFM-V-Logit 0.4491 0.4456 0.16641 0.3170 0.2580 0.2849 0.4481 

LFM-T-Logit 0.2540 0.2177 0.1805 0.2130 0.2565 0.2682 0.2253 

LFM-P-Logit 0.2020 0.1865 0.1437 0.1943 0.2005 0.2116 0.1919 

LFM-D-Logit 0.1870 0.1634 0.1582 0.1698 0.1905 0.2145 0.1554 

GLFM-Logit 0.7153 0.6623 0.3463 0.5615 0.4284 0.4731 0.7107 

GLFM-V-Logit 0.7180 0.6760 0.3327 0.5628 0.4272 0.4717 0.7143 

GLFM-VPD-Logit 0.7193 0.6707 0.3242 0.5413 0.4277 0.4724 0.7135 

GLFM-VPDT-Logit 0.7177 0.6777 0.3292 0.5631 0.4218 0.4658 0.7124 

LFM-V-Probit 0.4284 0.4202 0.1687 0.3070 0.2478 0.2736 0.4271 

LFM-T-Probit 0.2446 0.2357 0.1881 0.1917 0.1938 0.2133 0.2349 

LFM-P-Probit 0.2166 0.2070 0.1549 0.1706 0.1725 0.1816 0.2054 

LFM-D-Probit 0.1871 0.1760 0.1410 0.1476 0.1522 0.1643 0.1606 

GLFM-Probit 0.6886 0.6555 0.3074 0.5282 0.4045 0.4467 0.6854 

GLFM-V-Probit 0.7217 0.6794 0.3364 0.5749 0.4248 0.4691 0.7172 

GLFM-VPD-Probit 0.7257 0.6856 0.3287 0.5767 0.4268 0.4713 0.7207 

GLFM-VPDT-Probit 0.7397 0.6908 0.3353 0.5589 0.4418 0.4879 0.7353 

Table 7 

Experimental results of baseline comparisons for San Francisco. 

Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10 

Item Mean 0.0055 0.0031 0.0108 0.0118 0.0097 0.0036 0.0021 

UserKNN 0.0321 0.0253 0.0732 0.1165 0.0592 0.0704 0.0486 

ItemKNN 0.0548 0.0370 0.1267 0.1776 0.1219 0.1310 0.0950 

Biased-MF 0.0 0 04 0.0 0 03 0.0010 0.0024 0.0 0 04 0.0011 0.0 0 06 

BPR-MF 0.2124 0.1700 0.2552 0.3661 0.2991 0.3097 0.2588 

SVD ++ 0.0 0 03 0.0 0 03 0.0013 0.0027 0.0 0 07 0.0 0 08 0.0 0 04 

SVDFeature 0.1499 0.1343 0.1926 0.2180 0.1903 0.1979 0.1366 

Group-Membership 0.3019 0.2746 0.2068 0.3317 0.4063 0.4513 0.2987 

GLFM-VPDT-Pointwise 0.0043 0.0034 0.0151 0.0236 0.0019 0.0021 0.0041 

LFM-V-Logit 0.3295 0.2143 0.1848 0.2591 0.2208 0.2412 0.4364 

LFM-T-Logit 0.2277 0.2001 0.2385 0.2405 0.2164 0.2182 0.2266 

LFM-P-Logit 0.1973 0.1821 0.1547 0.1714 0.2412 0.2589 0.1902 

LFM-D-Logit 0.1888 0.1709 0.1787 0.2088 0.1612 0.1842 0.1793 

GLFM-Logit 0.5843 0.5110 0.3657 0.5573 0.3529 0.3897 0.5745 

GLFM-V-Logit 0.6355 0.5542 0.3721 0.5506 0.3861 0.4264 0.6248 

GLFM-VPD-Logit 0.6403 0.5629 0.3697 0.5545 0.3890 0.4296 0.6317 

GLFM-VPDT-Logit 0.6186 0.5457 0.3402 0.5085 0.3774 0.4168 0.6108 

LFM-V-Probit 0.3757 0.3372 0.1914 0.3549 0.2137 0.2361 0.3764 

LFM-T-Probit 0.2390 0.2280 0.2090 0.2254 0.2272 0.2490 0.2307 

LFM-P-Probit 0.2134 0.1933 0.1689 0.1815 0.2017 0.2288 0.2033 

LFM-D-Probit 0.1799 0.1633 0.1500 0.1645 0.1911 0.1939 0.1771 

GLFM-Probit 0.6112 0.5392 0.3666 0.5539 0.3651 0.4032 0.5985 

GLFM-V-Probit 0.6026 0.5353 0.3573 0.54 4 4 0.3637 0.4017 0.5948 

GLFM-VPD-Probit 0.6026 0.5284 0.3612 0.5414 0.3646 0.4026 0.5935 

GLFM-VPDT-Probit 0.5826 0.5366 0.2989 0.4 84 8 0.3449 0.3808 0.5772 

 

 

 

geographical distance has the least impact due to the fact that the RSVPs were considered local to a city, so the distance

is not a major consideration while deciding to attend an event. In conjunction with group and venue information, the

event popularity, temporal influence and geographical distance may slightly improve the performance, as shown on the

New York and San Francisco datasets. 
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Table 8 

Experimental results of baseline comparisons for Washington DC. 

Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10 

Item Mean 0.0029 0.0021 0.0053 0.0112 0.0058 0.0061 0.0034 

UserKNN 0.0043 0.0027 0.0078 0.0132 0.0068 0.0074 0.0050 

ItemKNN 0.0312 0.0161 0.0731 0.0773 0.0661 0.0698 0.0566 

Biased-MF 0.0013 0.0012 0.0039 0.0072 0.0021 0.0023 0.0 0 09 

BPR-MF 0.3322 0.2633 0.3692 0.4843 0.3915 0.4270 0.3664 

SVD ++ 0.0014 0.0019 0.0043 0.0086 0.0030 0.0031 0.0016 

SVDFeature 0.2281 0.2104 0.2332 0.2556 0.2789 0.2831 0.2175 

Group-Membership 0.3120 0.2690 0.2482 0.3656 0.3878 0.4321 0.3110 

GLFM-VPDT-Pointwise 0.0043 0.0040 0.0052 0.0069 0.0020 0.0023 0.0047 

LFM-V-Logit 0.2880 0.2538 0.1425 0.2099 0.1929 0.2131 0.2959 

LFM-T-Logit 0.2243 0.2112 0.1629 0.1641 0.2458 0.2506 0.2146 

LFM-P-Logit 0.1861 0.1854 0.1336 0.1572 0.1974 0.2114 0.1860 

LFM-D-Logit 0.1402 0.1356 0.1222 0.1279 0.1833 0.1914 0.1390 

GLFM-Logit 0.6909 0.5825 0.4766 0.6605 0.4414 0.4875 0.6820 

GLFM-V-Logit 0.7410 0.6167 0.5111 0.7003 0.4753 0.5249 0.7315 

GLFM-VPD-Logit 0.7301 0.6123 0.5026 0.6873 0.4631 0.5031 0.7100 

GLFM-VPDT-Logit 0.7032 0.6153 0.4603 0.6748 0.4373 0.4829 0.6950 

LFM-V-Probit 0.3469 0.3134 0.1741 0.2632 0.2214 0.2445 0.3514 

LFM-T-Probit 0.2061 0.2043 0.1956 0.2183 0.2611 0.2675 0.2060 

LFM-P-Probit 0.1750 0.1646 0.1342 0.1491 0.2361 0.2399 0.1677 

LFM-D-Probit 0.1651 0.1642 0.1342 0.1507 0.2112 0.2349 0.1640 

GLFM-Probit 0.6756 0.5832 0.4540 0.6580 0.4262 0.4707 0.6690 

GLFM-V-Probit 0.6865 0.6080 0.4407 0.6469 0.4357 0.4811 0.6 84 8 

GLFM-VPD-Probit 0.6516 0.5720 0.4213 0.6026 0.4274 0.4719 0.6587 

GLFM-VPDT-Probit 0.6843 0.6043 0.4367 0.6634 0.4181 0.4617 0.6744 

Table 9 

Experimental results of baseline comparisons for Chicago. 

Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10 

Item Mean 0.0 0 05 0.0 0 02 0.0 0 02 0.0 0 02 0.0 0 02 0.0 0 02 0.0 0 01 

UserKNN 0.0252 0.0171 0.0583 0.0757 0.0592 0.0623 0.0476 

ItemKNN 0.0516 0.0306 0.1166 0.1348 0.1025 0.1150 0.0870 

Biased-MF 0.0012 0.0010 0.0036 0.0066 0.0034 0.0033 0.0019 

BPR-MF 0.1653 0.1178 0.3011 0.3867 0.2917 0.3167 0.2672 

SVD ++ 0.0015 0.0014 0.0047 0.0087 0.0038 0.0043 0.0023 

SVDFeature 0.1441 0.1402 0.2754 0.2819 0.3043 0.3109 0.1414 

Group-Membership 0.4189 0.3536 0.3322 0.4930 0.3907 0.4360 0.4070 

GLFM-VPDT-Pointwise 0.0073 0.0036 0.0124 0.0124 0.0041 0.0046 0.0064 

LFM-V-Logit 0.4842 0.4105 0.2585 0.4163 0.2830 0.3126 0.4565 

LFM-T-Logit 0.2684 0.2621 0.2274 0.2965 0.2375 0.2415 0.2599 

LFM-P-Logit 0.1977 0.1805 0.2030 0.2161 0.2018 0.2086 0.1931 

LFM-D-Logit 0.1505 0.1499 0.1906 0.2044 0.2110 0.2286 0.1470 

GLFM-Logit 0.7073 0.5673 0.5200 0.6797 0.4290 0.4738 0.6801 

GLFM-V-Logit 0.7431 0.6026 0.5242 0.6828 0.4550 0.5026 0.7176 

GLFM-VPD-Logit 0.7200 0.5894 0.5081 0.6763 0.4388 0.4847 0.6963 

GLFM-VPDT-Logit 0.6463 0.5742 0.3882 0.5870 0.3849 0.4251 0.6344 

LFM-V-Probit 0.4313 0.3708 0.2287 0.3391 0.2531 0.2824 0.4011 

LFM-T-Probit 0.2836 0.2773 0.2289 0.2315 0.2410 0.2454 0.2745 

LFM-P-Probit 0.2018 0.1991 0.1742 0.1855 0.1752 0.1863 0.1984 

LFM-D-Probit 0.1712 0.1616 0.1542 0.1747 0.2015 0.2044 0.1675 

GLFM-Probit 0.7136 0.5678 0.5328 0.6748 0.4378 0.4835 0.6879 

GLFM-V-Probit 0.7221 0.6047 0.4978 0.6801 0.4396 0.4855 0.7021 

GLFM-VPD-Probit 0.7294 0.6042 0.4 96 8 0.6685 0.4464 0.4930 0.7082 

GLFM-VPDT-Probit 0.6842 0.5842 0.4368 0.6083 0.4146 0.4578 0.6683 

 

 

 

 

• The Logistic and Probit pairwise probability functions yield very competitive results while the Logistic function generates

slightly better performance than the Probit function does. All the best results on San Francisco and Washington DC are

attained by the Logistic function. For New York and Chicago, the results are mixed. 
• Among the baselines, the Group-Membership method obtains the best performance on all the four cities, which further

validates our assumption that group is an important factor for event recommendation. On the other hand, there still
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Fig. 2. Effect of dimensionality of latent factor space for P@10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

exists a large gap between the results of Group-Membership and the proposed group-aware models, which demonstrates

the effectiveness of our dual perspective of group information. 
• Both User-KNN and Item-KNN performed better than Item Mean, Biased-MF and SVD ++ models. These results are con-

sistent with Macedo et al. (2015) which found that state-of-the-art matrix factorization algorithms did not perform better

than neighborhood-based methods in event recommendation. In fact, the pointwise variation of the our model, GLFM-

VPDT-Pointwise, also yields poor results that are similar to Biased-MF and SVD ++ . The BPR-MF model, on the other

hand, yields the best results among the matrix factorization based baselines, validating our decision to utilize the pair-

wise ranking approach for event recommendation. SVDFeature also generates good results, which are second only to the

BPR-MF model. 

In sum, the experimental results consistently demonstrate the effectiveness of the proposed latent factor models by

exploiting the dual-perceptive of group information with pairwise learning. 

5.3.2. Effect of dimensionality of latent factor space 

In this section, we investigate the effect of the number of latent factors f (i.e., dimensionality of the latent factor space)

on our proposed models ( GLFM-VPD-Logit and GLFM-VPD-Probit ) and other state-of-the-art latent factor models (BPR-MF and

SVD ++ ) in event recommendation. The number of latent factors is varied from 10 to 100 in increments of 10. Fig. 2 plots

the results in P @10 for the four cities, respectively. We have the following observations from the figure: 

• The proposed group-aware latent factor models ( GLFM-VPD-Logit and GLFM-VPD-Probit ) perform significantly better than

the other latent factor methods at most values of f for all the cities. These results demonstrate consistent improvement

of the proposed models over the baselines across different numbers of latent factors. 
• The results of the group-aware latent factor models gradually improve until f = 40 and plateau after that with no sig-

nificant improvement. This pattern is observed for all four cities. On the other hand, the results of GLFM-VPD-Logit and

GLFM-VPD-Probit are quite similar at different f while GLFM-VPD-Logit yields slightly better performance than GLFM-VPD-

Probit in the majority of the cases of f . 
• The results of the BPR-MF method are significantly better than SVD ++ across all values of f while there is not much

variation in the results of the two methods as the value of f increases from 10 to 100. The same pattern is observed for

all four cities. These results validate the advantage of using the pairwise ranking approach. A noticeable observation is

that the recall results of BPR-MF for all four cities are almost similar to the results for the proposed group-aware latent

factor model ( GLFM-VPD-Logit and GLFM-VPD-Probit ) for f = 10 to 20, but the group-aware latent factor models perform

significantly better on recall for values of f > 30. 

As we can see, the relative performances of all the latent-factor based methods seem quite stable. These results indi-

cate the dimensionality of the latent factor space may not be very sensitive. We set f = 40 as the default value in other

experiments. 

5.3.3. Preference instance generation 

Section 4.6 introduces how preference instances are derived based on three relations. In this section, we compare two

strategies for generating the preference instances. The first strategy is the default one shown in Section 4.6 , which we
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Table 10 

Comparison between the default preference instance generation strategy WUP and the alternative strategy 

WOUP with the GLFM-VPD-Logit model for Chicago. 

Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10 

GLFM-VPD-Logit (WOUP) 0.1989 0.1947 0.1260 0.2086 0.1093 0.1208 0.1965 

GLFM-VPD-Logit (WUP) 0.7200 0.5894 0.5081 0.6763 0.4388 0.4847 0.6963 

Table 11 

Experimental results in the cold-start setting on New York. 

Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10 

New Users 

Item Mean 0.0031 0.0021 0.0139 0.0194 0.0088 0.0096 0.0029 

Group-Membership 0.0 0 03 0.0 0 03 0.0018 0.0036 0.0033 0.0036 0.0 0 03 

Biased-MF 0.0 0 01 0.0 0 01 0.0 0 05 0.0011 0.0 0 04 0.0 0 05 0.0 0 03 

BPR-MF 0.0163 0.0124 0.0769 0.1178 0.0219 0.0266 0.0202 

SVD ++ 0.0 0 01 0.0 0 01 0.0 0 05 0.0010 0.0 0 05 0.0 0 05 0.0 0 03 

SVDFeature 0.0124 0.0118 0.0547 0.0919 0.0183 0.0191 0.0116 

GLFM-VPD-Logit 0.0477 0.0293 0.2107 0.2618 0.0424 0.0468 0.0579 

GLFM-VPD-Probit 0.0486 0.0280 0.2163 0.2507 0.0407 0.0450 0.0562 

New Events 

Group-Membership 0.0025 0.0025 0.0027 0.0053 0.0039 0.0044 0.0025 

Biased-MF 0.0 0 01 0.0 0 01 0.0 0 02 0.0 0 09 0.0 0 03 0.0 0 03 0.0 0 02 

BPR-MF 0.0156 0.0121 0.0721 0.1118 0.0317 0.0331 0.0275 

SVD ++ 0.0 0 01 0.0 0 01 0.0 0 05 0.0011 0.0 0 05 0.0 0 05 0.0 0 03 

SVDFeature 0.0108 0.0100 0.0523 0.0667 0.0204 0.0202 0.0102 

GLFM-VPD-Logit 0.0509 0.0292 0.2263 0.2619 0.0432 0.0477 0.0592 

GLFM-VPD-Probit 0.0463 0.0291 0.2053 0.2619 0.0394 0.0435 0.0551 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

denote as WUP (With Unknown RSVPs). It forms a preference pair with an unknown RSVP as the positive instance and a

random negative RSVP as the negative instance. The second strategy, which we denotes as WOUP, does not assume that the

unknown RSVPs are preferred over the observed RSVP “No”. The results of both the strategies are provided in Table 10 (only

the GLFM-VPD-Logit model for Chicago is shown to avoid clutter since GLFM-VPD-Logit usually gives the best results across

different cities as shown in the previous sections). As we can see, the default strategy WUP yields much superior results

than WOUP does, which validates the advantage of utilizing the unobserved RSVPs. 

5.3.4. Cold-start event recommendation 

Cold-start is a challenging problem in any recommendation system when there is no information about users or items.

Cold-start is especially prevalent in event recommendation, because events are always in the future and short-lived. In this

section, we test the performance of our models in the cold-start settings. We evaluate our models under two scenarios: new

users and new items . 

For the new users scenario, we split the dataset to ensure the same user is not present in both the training and test sets.

The time order is reserved so that the events in the test data always occur after those in the training data. Similar to what

we did for the experiments in the regular setting, we perform a training-test data split of 80% vs. 20%. We split the dataset

similarly for the new events scenario with a 80% vs. 20% ratio for training and testing sets and ensure that the same event

is not present in both sets. 

We perform the experiments on the group-aware models that consider the group, venue, popularity and distance fac-

tors ( GLFM-VPD-Logit and GLFM-VPD-Probit ) as they provide the best results for a majority of the regular experiments. We

compare the performance of group-aware latent factor models with the baseline methods: Item Mean, Group-Membership,

Biased-MF, BPR-MF, SVD ++ , and SVDFeature. Item Mean is not applicable to the new events scenario due to no historical

information available for the new events. UserKNN and ItemKNN cannot handle the cold-start settings and hence we ignore

them in this experiment. Regarding our proposed models, since a user in the test set is not present in the training set, we

are unable to learn the user-specific parameters. In other words, we do not have user latent factor p u , but we have the

dual-perspective group factors r g and t g that enable the calculation of the ranking score for the new users scenario. The

prediction of our models is made by removing p u from Eq. (11) . Similarly, for the new items scenario, we do not have event

latent factor q i and the popularity count c i , but we have the event-oriented factor t g . The prediction is made by removing

q i and c i from Eq. (11) . 

Tables 11–14 contain the results for the cold-start experiments. As we can see, the best results in both new-user and new-

event scenarios are achieved by our proposed methods, GLFM-VPD-Logit or GLFM-VPD-Probit . This pattern holds true across

different cities and different evaluation metrics. The improvement is especially substantial on New York and Washington DC.

Furthermore, GLFM-VPD-Logit and GLFM-VPD-Probit yield competitive results. GLFM-VPD-Probit achieves the best results on
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Table 12 

Experimental results in the cold-start setting on San Francisco. 

Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10 

New Users 

Item Mean 0.0072 0.0074 0.0320 0.0688 0.0091 0.0108 0.0084 

Group-Membership 0.0 0 03 0.0 0 03 0.0016 0.0033 0.0029 0.0030 0.0 0 03 

Biased-MF 0.0 0 01 0.0 0 01 0.0 0 02 0.0 0 05 0.0 0 02 0.0 0 02 0.0 0 01 

BPR-MF 0.0270 0.0180 0.1291 0.1526 0.0177 0.0189 0.0238 

SVD ++ 0.0 0 01 0.0 0 01 0.0 0 03 0.0011 0.0 0 03 0.0 0 04 0.0 0 02 

SVDFeature 0.0194 0.0187 0.1011 0.1276 0.0163 0.0171 0.0190 

GLFM-VPD-Logit 0.0201 0.0122 0.0765 0.0947 0.0180 0.0199 0.0235 

GLFM-VPD-Probit 0.0308 0.0186 0.1299 0.1590 0.0242 0.0267 0.0335 

New Events 

Group-Membership 0.0075 0.0071 0.0031 0.0059 0.0042 0.0049 0.0075 

Biased-MF 0.0 0 01 0.0 0 01 0.0 0 03 0.0 0 09 0.0 0 02 0.0 0 03 0.0 0 01 

BPR-MF 0.0270 0.0181 0.1096 0.1171 0.0093 0.0105 0.0826 

SVD ++ 0.0 0 01 0.0 0 01 0.0 0 03 0.0010 0.0 0 03 0.0 0 04 0.0 0 02 

SVDFeature 0.0186 0.0173 0.1144 0.1261 0.0179 0.0185 0.0164 

GLFM-VPD-Logit 0.0171 0.0114 0.0647 0.0887 0.0145 0.0160 0.0191 

GLFM-VPD-Probit 0.0281 0.0185 0.1183 0.1549 0.0200 0.0221 0.0297 

Table 13 

Experimental results in the cold-start setting on Washington DC. 

Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10 

New Users 

Item Mean 0.0013 0.0012 0.0068 0.0101 0.0084 0.0097 0.0011 

Group-Membership 0.0 0 04 0.0 0 04 0.0019 0.0037 0.0024 0.0026 0.0 0 04 

Biased-MF 0.0 0 01 0.0 0 01 0.0 0 06 0.0012 0.0 0 05 0.0 0 06 0.0 0 04 

BPR-MF 0.0150 0.0094 0.0143 0.0186 0.0107 0.0119 0.0147 

SVD ++ 0.0 0 01 0.0 0 01 0.0 0 08 0.0020 0.0 0 07 0.0 0 09 0.0 0 05 

SVDFeature 0.0124 0.0119 0.0167 0.0186 0.0144 0.0151 0.0111 

GLFM-VPD-Logit 0.0165 0.0108 0.0671 0.0870 0.0127 0.0129 0.0184 

GLFM-VPD-Probit 0.0174 0.0126 0.0733 0.1054 0.0133 0.0147 0.0197 

New Events 

Group-Membership 0.0 0 04 0.0 0 04 0.0015 0.0032 0.0026 0.0029 0.0 0 04 

Biased-MF 0.0 0 02 0.0 0 01 0.0 0 09 0.0015 0.0 0 06 0.0 0 08 0.0 0 05 

BPR-MF 0.0144 0.0101 0.0207 0.0261 0.0094 0.0107 0.0188 

SVD ++ 0.0 0 02 0.0 0 01 0.0 0 09 0.0017 0.0 0 09 0.0 0 09 0.0 0 06 

SVDFeature 0.0131 0.0118 0.0219 0.0221 0.0171 0.0188 0.0126 

GLFM-VPD-Logit 0.0180 0.0109 0.0784 0.0935 0.0122 0.0134 0.0194 

GLFM-VPD-Probit 0.0173 0.0111 0.0688 0.0903 0.0096 0.0106 0.0161 

Table 14 

Experimental results in the cold-start setting on Chicago. 

Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10 

New Users 

Item Mean 0.0011 0.0019 0.0045 0.0164 0.0041 0.0057 0.0014 

Group-Membership 0.0 0 05 0.0 0 05 0.0019 0.0032 0.0037 0.0039 0.0 0 05 

Biased-MF 0.0 0 02 0.0 0 02 0.0010 0.0023 0.0 0 08 0.0010 0.0 0 06 

BPR-MF 0.0234 0.0181 0.1073 0.1662 0.0120 0.0153 0.0296 

SVD ++ 0.0 0 03 0.0 0 03 0.0015 0.0036 0.0016 0.0017 0.0 0 08 

SVDFeature 0.0194 0.0182 0.0997 0.1055 0.0193 0.0217 0.0187 

GLFM-VPD-Logit 0.0276 0.0203 0.1105 0.1730 0.0204 0.0225 0.0318 

GLFM-VPD-Probit 0.0190 0.0146 0.0779 0.1200 0.0158 0.0175 0.0234 

New Events 

Group-Membership 0.0 0 05 0.0 0 05 0.0017 0.0034 0.0042 0.0061 0.0 0 05 

Biased-MF 0.0 0 03 0.0 0 03 0.0015 0.0034 0.0012 0.0015 0.0 0 09 

BPR-MF 0.0176 0.0158 0.0822 0.1492 0.0132 0.0146 0.0199 

SVD ++ 0.0 0 05 0.0 0 03 0.0022 0.0034 0.0011 0.0016 0.0 0 07 

SVDFeature 0.0167 0.0158 0.0822 0.0945 0.0171 0.0183 0.0159 

GLFM-VPD-Logit 0.0311 0.0199 0.1308 0.1703 0.0199 0.0220 0.0312 

GLFM-VPD-Probit 0.0186 0.0173 e 0.07403 0.1470 0.0132 0.0146 0.0220 
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San Francisco while GLFM-VPD-Logit obtains the best on Chicago for both scenarios. On the other two cities, the results are

mixed. Among the baseline methods, BPR-MF generates the best results across four cities in all the metrics for both cold-

start scenarios. These results validate the advantage of pairwise training for the event recommendation task. In sum, the

experimental results demonstrate the advantage of the proposed models in dealing with the cold-start problems for event

recommendation. In our cold-start experiments, we considered only new users and events, which is atypical of a real-world

scenario. 

6. Conclusions and future work 

We systematically investigate the effect of group information on event recommendation. A latent factor model is pro-

posed based on the dual-perspective of groups. Logistic and Probit functions are used to model the probability of pairwise

preferences that consist of observed and unobserved user feedback. Additional contextual information such as event venue,

popularity, temporal influence, and geographical distance can be readily incorporated into the model. The experiments on

the Meetup data of four cities demonstrate the importance of group information and show much improved performance

over the state-of-the-art baselines. Moreover, the proposed approach demonstrates advantages of tackling the cold-start

problems by utilizing the dual role of groups. 

The proposed dual-perspective latent factor model can be applied to other recommendation tasks where certain factors

may have a dual view. For example, users may specify their topics of interest in their profiles (e.g., music recommendation

in Pandora, job recommendation in LinkedIn, book recommendation in Amazon, etc.) and items may also have the topic

information available (e.g., genre of a song and category of a job or book). In this case, the topics serve a dual role. In

future work, we will generalize the proposed approach to a wide range of recommendation tasks where a dual perspec-

tive of factors is present. In addition, we plan to incorporate into the proposed model more contextual features such as

content information ( Du et al., 2014; Macedo et al., 2015; Zhang & Wang, 2015 ), and social relations ( Boutsis, Karaniko-

laou, & Kalogeraki, 2015; Qiao et al., 2014a ), to further boost the performance of event recommendation. Moreover, we will

investigate learning to rank based recommendation ( Belem, Martins, Almeida, & Goncalves, 2014 ) such as the listwise rec-

ommendation approach by taking a ranked list of items as a training instance to minimize a loss function over the training

ranked lists. A listwise recommendation approach has demonstrated effectiveness and efficiency over the pairwise methods

in movie recommendations ( Shi, Larson, & Hanjalic, 2010 ). Last but not the least, we will take a deep look into the latent

factors learned by the proposed models and explore methods to make the results more explainable. 
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