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ABSTRACT

Learning to Rank (L2R) has emerged as one of the core machine
learning techniques for IR. On the other hand, Energy-Based Mod-
els (EBMs) capture dependencies between variables by associating
a scalar energy to each configuration of the variables. They have
produced impressive results in many computer vision and speech
recognition tasks. In this paper, we introduce a unified view of
Learning to Rank that integrates various L2R approaches in an
energy-based ranking framework. In this framework, an energy
function associates low energies to desired documents and high en-
ergies to undesired results. Learning is essentially the process of
shaping the energy surface so that desired documents have lower
energies. The proposed framework yields new insights into learn-
ing to rank. First, we show how various existing L2R models
(pointwise, pairwise, and listwise) can be cast in the energy-based
framework. Second, new L2R models can be constructed based
on existing EBMs. Furthermore, inspired by the intuitive learn-
ing process of EBMs, we can devise novel energy-based models
for ranking tasks. We introduce several new energy-based ranking
models based on the proposed framework. The experiments are
conducted on the public LETOR 4.0 benchmarks and demonstrate
the effectiveness of the proposed models.
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1. INTRODUCTION

Ranking is the central problem in many IR tasks including docu-
ment retrieval, entity search, question answering, meta-search, col-
laborative filtering, online advertisement, and so on. These tasks
usually work with high dimensional feature vector representations
of the items to be ranked. The typical features range from query in-
dependent ones to information measuring the match between user
or query and retrieved item. The dimensionality of feature vectors
and the complexity of statistical relationships involved are such that
accurate results cannot be achieved by designing the relevant rank-
ing functions manually. Therefore, learning to rank (L2R) from
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examples has become the dominant approach for designing and op-
timizing ranking systems. Recent years have witnessed significant
efforts on research and development of learning to rank technolo-
gies. L2R models can be classified into three broad families: point-
wise, pairwise, and listwise methods [16, 15]. Benchmark datasets
like LETOR [17] have been released to facilitate the research on
learning to rank. It has become a key technology in the industry.
Several major search engine companies are using L2R techniques
to train their ranking models [16].

On the other hand, energy-based models (EBMs) [13, 12] are a
family of learning models that capture dependencies between vari-
ables by associating a scalar energy to each configuration of the
variables. Making a decision (an inference) with an EBM consists
of comparing the energies associated with various configurations
of the variable to be predicted, and choosing the one with the low-
est energy. Such systems are trained to associate low energies to
the desired configurations and higher energies to undesired ones.
Unlike probabilistic models that associate a probability to those
configurations, energy-based models eliminate the need for proper
normalization of probability distributions. The main question in
EBMs is how to design a loss function so that minimizing this loss
function with respect to the parameter vector will have the effect
of “digging holes and building hills" at the required places on the
energy surface. Energy-based models have been widely applied to
computer vision and speech recognition tasks, and demonstrated
their effectiveness and efficiency [20, 18]. Some recent successes
of deep learning architectures are largely due to energy-based learn-
ing [25].

In this paper, we attempt to shed new light on learning to rank
by formulating it in an energy-based framework. To the best of
our knowledge, no prior work has investigated the link between
learning to rank and energy-based learning. We present a unified
energy-based framework for learning to rank. We demonstrate how
various existing learning to rank models (pointwise, pairwise, and
listwise) can be cast in this framework. Moreover, we propose new
learning to rank techniques based on the energy-based framework.
The advantages of the energy-based framework for learning to rank
are multi-fold. First of all, it can demonstrate the similarity and dif-
ference between various L2R methods from the energy-based per-
spective, which may help us gain further insights into the strengths
and weaknesses of each ranking algorithm. Moreover, there exists
an extensive research on energy-based models in machine learning
and computer vision communities. We can explore and apply them
to learning to rank problems. Last but not the least, the energy-
based framework can provide sensible guidelines to design and pro-
pose new learning to rank models. The energy-based learning aims
to reshape the energy functions so that the desired outcomes have



lower energies. The loss and energy functions can be intuitively
designed to achieve this effect.

2. RELATED WORK

2.1 Learning to Rank

Learning to rank models can be classified into three broad fam-
ilies: pointwise, pairwise, and listwise methods [16]. Pointwise
approaches postulate a scoring function and attempt to estimate the
relevance score of every item. The relevance score is typically the
rank of the item in the list or a transformed version of it. At pre-
diction time, the items returned for a query are sorted according
to their estimated scores. Linear and logistic regression are exam-
ples of scoring functions used in pointwise approaches. Pairwise
methods score ordered pairs of items instead of individual items.
The goal is now to learn the order of such pairs correctly. In other
words, the task is to score more relevant items higher than less rel-
evant ones. In general, this approach is preferable to the pointwise
approach, because it does not require to learn absolute relevance
scores. RankSVM [10] is one of the most popular pairwise ap-
proaches. It formalizes ranking as a binary classification problem
of item pairs and uses support vector machines as the underlying
binary classifier. RankBoost [8] is another pairwise ranking model,
where boosting is used to learn the ranking. The idea is to con-
struct a sequence of weak rankers over iteratively reweighted train-
ing data, and then to make rank predictions using a linear combina-
tion of the weak learners. While the predictive power of RankBoost
is greater in theory, it only marginally improves the quality of rank-
ing in practice. Burges et al. [3] propose the RankNet algorithm,
which is also based on pairwise classification like RankSVM and
RankBoost. The major difference lies in that it employs Neural
Network as ranking model and uses cross entropy as loss function.
Finally, listwise approaches assume that the training examples are
lists of ranked items. They attempt to minimize a loss function
defined over the whole list instead of ordered pairs extracted from
the list. ListMLE [29] and ListNet [4] are two representative list-
wise models. The loss functions are defined using the probability
distribution on permutations. AdaRank [30] is another listwise ap-
proach, based instead on boosting. There exist an abundance of
learning to rank techniques in the literature. Liu [16] and Li [15]
provide two comprehensive surveys.

2.2 Energy-based Learning

The energy-based framework was first proposed by LeCun and
Huang [13, 11] as a deterministic alternative to probabilistic graph-
ical models. It provides a very general framework for dealing with
learning systems, and immediately puts machine learning to the
scope of mathematical optimization. Zhang [31] proves that prob-
ably approximately correct (PAC) learning is guaranteed for the
energy-based learning. Energy-based models were successfully
applied to various machine learning tasks including computer vi-
sion [20], speech recognition [18], unsupervised learning [23], re-
inforcement learning [9], relational learning [1], missing value im-
putation [2]. BoltzRank [27] is the only explicit energy-based L2R
model in the literature, based on an energy function that depends on
a scoring function composed of individual and pairwise potentials.
To the best of our knowledge, no prior work has systematically
studied the relationship between learning to rank and energy-based
learning.

Recently, energy-based models are used to learn deep, distributed
representations of high-dimensional data (such as images) and model
high-order dependencies. An important class of energy-based mod-
els are Restricted Boltzmann Machines [28]. Energy-based deep

Table 1: Some commonly used energy functions in Energy-

Based Models [11].
1
2 ||fθ(x)− y||2
||fθ(x)− y||1
−yfθ(x)
1
2 ||fθx(x)− gθy (y)||2�K

k=1 δ(y − k)||Uk − fθ(x)||2

Table 2: A list of commonly used loss functions in Energy-

Based Models [11].

Energy loss Eθ(x, y)
Perceptron Eθ(x, y)−miny∈Y Eθ(x, y)
Hinge max(0,m+ Eθ(x, y)− Eθ(x, ȳ))
Log log(1 + eEθ(x,y)−Eθ(x,ȳ))
MCE (1 + e−(Eθ(x,y)−Eθ(x,ȳ)))−1

LVQ2 min(M,max(0, Eθ(x, y)− Eθ(x, ȳ)))
square-square Eθ(x, y)

2 − (max(0,m− Eθ(x, ȳ)))
2

square-exp Eθ(x, y)
2 + βe−Eθ(x,ȳ)

NLL Eθ(x, y) + 1
β log

�
y∈Y e−βEθ(x,y)

MEE 1− e−βEθ(x,y)
�

y∈Y e−βEθ(x,y)

learning models have been applied to a range of challenging tasks
including motion capture modeling [26], modeling of transforma-
tions in natural images [19], and visual tracking [14]. Establishing
the link between L2R and EBMs may facilitate applications of deep
learning to information retrieval.

3. BACKGROUND

3.1 Energy-based Models

The entire framework of energy-based models, by its name, is
centered around the concept of energy. It captures dependencies by
associating a scalar energy (a measure of compatibility) E(x, y) to
each configuration of the input variable x and output y. In infer-
ence, i.e., making prediction or decision, the model produces the
answer y ∈ Y that is most compatible with the observed x, for
which E(x, y) is the smallest:

y∗ = argmin
y∈Y

E(x, y) (1)

As a result, model learning consists in finding an energy function
that associates low energies to correct values of the variables, and
higher energies to incorrect values. The energy function is often
assumed within a family of energy functions Eθ indexed by pa-
rameter θ. The energy function could be as simple as a linear com-
bination of basis functions or a set of neural network architectures
with weight values. One advantage of the energy-based framework
is that it puts very little restrictions on the nature of the architec-
ture of the energy function. Table 1 contains some common energy
functions.

A loss functional (function of function) is defined over energy
functions. It is minimized during learning and used to measure
the quality of the available energy functions. Within this common
inference/learning framework, the wide choices of energy functions
and loss functionals allow for the design of many types of learning
models, both probabilistic and non-probabilistic. Table 2 shows
a list of commonly used loss functions in EBMs. In the table, ȳ
denotes the most offending incorrect answers, i.e., the answer that
has the lowest energy among all the incorrect answers.



EBMs have several advantages over maximum likelihood learn-
ing. By trying to model the whole joint distribution of a data set,
a large part of the flexibility of probabilistic models is used to cap-
ture relationships that might not be necessary for the task of inter-
est. An energy model with a deterministic inference method can
make predictions that are directly optimized for the task of interest
itself. Moreover, since the normalization constant of many genera-
tive models is intractable, inference needs to be done with methods
like sampling or variational inference. Deterministic energy-based
models circumvent this problem. LeCun et al. [11] provides a sur-
vey on energy-based models.

3.2 Notations

Learning to rank is comprised of training and testing as a super-
vised learning task. The training data contains queries, documents,
and relevance judgments. Each query is associated with a num-
ber of documents. The relevance of the documents with respect
to the query is represented by a label which is at multiple grades.
The higher grade a document has, the more relevant the document
is. Suppose that Q is the query set, D is the document set, and
R = {1, 2, ..., l} is the label set. There exists a total order between
the grades l � l − 1... � 1, where � denotes the order relation.
Further suppose that {q1, q2, ..., qm} is the set of queries for train-
ing and qi is the i-th query. Di = {di,1, di,2, ..., di,ni} is the set of
documents associated with query qi and ri = {ri,1, ri,2, ..., ri,ni}
denotes the corresponding labels of those documents, where ni de-
notes the sizes of Di; di,j denotes the j-th document in Di; and
ri,j ∈ R represents the relevance degree of di,j with respect to
qi. A feature vector xi,j is created from each query-document pair
(qi, di,j).

4. AN ENERGY-BASED RANKING FRAME-

WORK

The main goal of learning to rank is to learn the relationship be-
tween document d and its relevance r given query q. We propose an
energy-based ranking framework to encode dependencies among
them, by associating a scalar energy Eθ(q, d, r) to each configura-
tion of d and r given q. The family of possible energy functions is
parameterized by a parameter vector θ, which is to be learned from
the training data. Similar to other EBMs, this energy function can
be viewed as a measure of “compatibility" between d and r given q.
In the following sections, we use the convention that small energy
values correspond to highly compatible configurations of the vari-
ables, while large energy values correspond to highly incompatible
configurations of the variables. There are three key components in
the energy-based ranking framework.

• Loss functional is used to measure the quality of the available
energy functions. Unlike the traditional loss functions in ma-
chine learning, the loss function in energy-based learning is
defined on energy functions and thus is a functional. Similar
to the other loss functions, it is minimized during the training
process.

• Learning consists in finding an energy function that asso-
ciates low energies with the desired documents, and higher
energies with the undesired documents. It is worth noting
that the existing EBMs only adjusts the energies on the same
instance, but for different output values (correct vs. incor-
rect). For ranking problems, we attempt to adjust the ener-
gies on different instances (i.e., documents), especially for
pairwise and listwise learning. This is one of the major dif-
ferences between the existing EBMs and the proposed rank-
ing framework.

• Ranking generates a list of documents that are ranked based
on their energies in the ascending order.

Mathematically, to train an energy-based ranking model, we min-
imize the loss functional with respect to θ as follows

θ∗ = min
θ

� 1
m

m�

i=1

Lq

�
Eθ(qi, d, r)

�
+R(θ)

�
(2)

where Lq

�
Eθ(qi, d, r)

�
is the per-query loss functional defined on

the energy function Eθ(qi, d, r). R(θ) is the regularizer and can be
used to embed our prior knowledge about which energy functions
in our family are preferable to others.

The ranking process consists of two steps in general. The first
step is to find the relevance degree r that is most compatible with
the document d given query qi and model parameter θ (learned
from training), which is to minimize the energy function with re-
spect to r:

Eθ(qi, d) = min
r∈R

Eθ(qi, d, r) (3)

The documents can then be ranked based on Eθ(qi, d) in ascending
order. In other words, the most relevant document given query qi is

d∗ = argmin
d∈Di

Eθ(qi, d) = argmin
d∈Di

min
r∈R

Eθ(qi, d, r) (4)

In the cases where the energy function does not depend on r, we
can just rank the documents based on Eθ(qi, d). It is worth noting
that the energy function is minimized during the ranking process
while the loss functional is minimized during the learning process.

Besides the advantages of EBMs pointed out in Section 3.1, the
key characteristic of energy-based learning is the process of reshap-
ing the energy function based on training data so that the desired re-
sults would have lower energies. It can be viewed that the loss func-
tion is operated on energy functions instead of parameters. This
functional point of view can shed new light on learning to rank.
With a properly designed loss function, the energy-based ranking
process should have the effect of “pushing down” on the energies
of the desired documents and “pulling up” on the undesired ones.
The following subsections will cast several existing learning to rank
models in the energy-based ranking framework. In Section 5, we
derive novel learning to rank models based on this framework.

4.1 Pointwise

In the pointwise approach, the ranking problem is transformed to
classification or regression. The existing methods for classification
or regression are applied. The loss function in learning is pointwise
in the sense that it is defined on a single object (feature vector). The
energy-based models have been studied extensively for traditional
classification and regression models. For completeness, we just
briefly show how some widely used classification models includ-
ing support vector machine (SVM), logistic regression, and linear
regression can be cast in the energy-based ranking framework.

For simplicity, assuming the relevance is binary: rij ∈ {1,−1},
the energy function can be defined as:

Eθ(qi, dij , rij) = −rijf(qi, dij ; θ) = −rijθ
Txi,j (5)

where f(qi, dij ; θ) is a discriminant function parameterized by θ
and assumed a linear model here. By plugging this energy function
into the hinge loss in Table 2, we obtain the per-query loss function
as follows

Lq =
Di�

j=1

max(0,M + 2rijθ
Txi,j) (6)



where M is the margin parameter. If the regularizer takes the form
||θ||22, the loss will result in the linear SVM.

If we plug the energy function in Eqn.(5) into the Log loss in
Table 2, the per-query loss function becomes:

Lq =
Di�

j=1

log
�
1 + exp(−2rijθ

Txi,j)
�

(7)

which gives the logistic regression model. The loss functions in
Eqn.(6) and Eqn.(7) are slightly different from the standard ones
for SVM and logistic regression, but they are equivalent since the
multiplier of 2 can be absorbed into the parameter θ.

If an energy function is defined as the squared error between
θTxi,j and rij as follows:

Eθ(qi, dij , rij) = (θTxi,j − rij)
2 (8)

then the Energy loss, Perceptron loss, and negative log-likelihood
(NLL) loss in Table 2 are all equivalent and lead to the regression
loss function in the pointwise model called Subset Ranking with
Regression [6]. The reason is the contrastive term of the NLL loss
becomes constant since it is a Gaussian integral with a constant
variance, and that of the Perceptron loss is zero.

4.2 Pairwise

The pairwise approach does not focus on accurately predicting
the relevance degree of each document; instead, it cares about the
relative order between two documents. In this sense, it is closer to
the concept of “ranking" than the pointwise approach. In this sec-
tion, we cast two representative pairwise L2R models, RankSVM
and RankNet, in the energy-based ranking framework.

4.2.1 RankSVM

RankSVM [10] is one of the first learning to rank methods. It
is based on the pairwise comparison between two documents. The
RankSVM model can be formulated in the energy-based frame-
work by assuming the following energy function:

Eθ(qi, dij , rij) = −f(qi, dij ; θ) (9)

with a linear feature model

f(qi, dij ; θ) = θTxi,j (10)

The loss function Lp for a pair of documents dij and dik given
query qi is defined as

Lp = max
�
0, 1+yjk

�
Eθ(qi, dij , rij)−Eθ(qi, dik, rik)

��
(11)

where yjk is an indicator variable. If document dij is preferred over
dik (i.e., rij > rik) given query qi, yjk = 1; otherwise, yjk = −1.
The combination of the energy and loss with the L2 regularizer
leads to the following loss function for all the pairwise instances:

min
θ

�

i,(j,k)

max
�
0, 1− yjkθ

T(xi,j − xi,k)
�
+ λ||θ||22 (12)

This unconstrained optimization problem is equivalent to the fol-
lowing constrained optimization problem [15]:

minθ,ξ
1
2 ||θ||

2
2 + C

�
i,(j,k) ξi,(j,k) (13)

s.t. yjkθ
T(xi,j − xi,k) ≥ 1− ξi,(j,k) (14)

ξi,(j,k) ≥ 0 (15)

where C = 1
2λ . This is the objective function of the RankSVM

model [10].

It is worth noting that the loss in Eqn.(11) is different from the
hinge loss used in EBMs shown in Table 2. As discussed in the
beginning of Section 4, in the energy-based ranking framework,
we aim to reshape the energy function over different instances (i.e.,
documents) while the existing EBMs usually focus on the energy
function of a single instance but with different output values.

4.2.2 RankNet

RankNet [3] is one of the learning-to-rank algorithms used by
commercial search engines [16]. It is also based on the comparison
of a pair of documents. Let us define a loss functional of the energy
functions as follows:

Lp = log
�
1 + exp

�
Eθ(qi, dij , rij)− Eθ(qi, dik, rik)

��
(16)

where dij is preferred over dik for query qi. The following energy
function can be used:

Eθ(qi, dij , rij) = −f(qi, dij ;w) (17)

= −f(
�

s

wsfs(
�

t

wstx(t) + bs) + b) (18)

where f is a three layer neural network with a single output node.
x(t) denotes the t-th element of input xi,j, wst, and bs, and fs
denote the weight, bias, and activation function of the first layer,
respectively, ws, b, and f denote the weight, bias, and activation
function of the second layer, respectively. The activation functions
are usually sigmoid functions. By plugging the energy function in
Eqn.(17) into the loss in Eqn.(16), we obtain the following opti-
mization problem:

min
w

�

i,(j,k)

log
�
1 + exp

�
f(qi, dik;w)− f(qi, dij ;w)

��
(19)

which is equivalent to the objective function in RankNet. In fact,
this objective is also equivalent to the Bayesian Personalized Rank-
ing (BPR) optimization criterion [24] (if f is factorized as the prod-
uct of user and item latent factors), which is widely used in recom-
mender systems for dealing with implicit feedback.

4.3 Listwise

The listwise approach addresses the ranking problem in a more
natural way. Specifically, it takes ranked lists as instances in the
learning process. The group structure of ranking is maintained. In
this section, we study a representative listwise L2R model: ListMLE
[29], which exploits the Plackett-Luce (PL) model studied in statis-
tics. PL model defines a probability distribution over permuta-
tions of objects, referred to as permutation probability. Let π de-
note a permutation (ranked list) of the objects and π−1(i) denote
the object in the ith rank (position) in π. Further suppose that
there are non-negative scores assigned to the objects. Let s =
{s1, s2, ..., sn} denotes the scores of the objects. The PL model
defines the probability of permutation π based on scores s as fol-
lows.

Ps(π) =
n�

i=1

sπ−1(i)�n
j=i sπ−1(j)

(20)

The probabilities of permutations naturally form a probability dis-
tribution. In document ranking, given feature vectors z1, z2, ..., zn,
the top k probability of subgroup g[z1, z2, ..., zn] is calculated as

Ps(g[z1, z2, ..., zn]) =
k�

j=1

exp
�
s(zj; θ)

�
�n

t=j exp
�
s(zt; θ)

� (21)



ListMLE maximizes the likelihood of the ground truth ranked lists,
which is equivalent to minimizing the following energy-based loss
function:

L = −
m�

i=1

log
k�

j=1

exp
�
− E(xi,π−1

i (j); θ)
�

�ni
t=j exp

�
− E(xj,π−1

i (t); θ)
� (22)

where E(xi,π−1
i (j); θ) = −f(xi,π−1

i (j); θ) and f is a neural net-
work model with parameter θ. πi is the ranking according to the
ground truth ranked list for query qi.

Let us investigate the loss function Lq for query qi as follow:

Lq = − log
k�

j=1

exp
�
− E(xi,π−1

i (j); θ)
�

�ni
t=j exp

�
− E(xi,π−1

i (t); θ)
�

=
k�

j=1

E(xi,π−1
i (j); θ) + F (π, E; θ) (23)

where F (π, E; θ) is the contrastive term defined as

F (π, E; θ) =
k�

j=1

log
ni�

t=j

exp
�
− E(xi,π−1

i (t); θ)
�

(24)

Based on Eqn.(23), we can explain ListMLE in the energy-based
ranking framework as follows. To minimize the loss function in
Eqn.(23), we need to “push down” the energies of the top k docu-
ments while “pull up” all the energies of the contrastive term (since
it is the decreasing function of the energies). For the top ith po-
sition, the energies of all the documents below i and including i
are pulled up due to the contrastive term, but the energy at the i-th
position is pushed down harder by the first term. This can be seen
in the expression of the gradient:

∂Lq

∂θ
=

k�

j=1

∂E(xi,π−1
i (j); θ)

∂θ

−
k�

j=1

ni�

t=j

∂E(xi,π−1
i (t); θ)

∂θ
P (xi,π−1

i (t); θ) (25)

where

P (xi,π−1
i (t); θ) =

exp
�
− E(xi,π−1

i (t); θ)
�

�ni
t=j exp

�
− E(xi,π−1

i (t); θ)
� (26)

Thus, for each top position i, the contrastive term pulls up on the
energy of each document (below or including i) with a force pro-
portional to the negative energy of that document under the model.

5. NEW ENERGY-BASED RANKING MOD-

ELS

The energy-based ranking framework establishes the link be-
tween learning to rank and EBMs. The existing research in EBMs
(e.g., various loss and energy functions) can be readily utilized to
solve ranking problems. Furthermore, the energy-based perspec-
tive may provide new insights and sensible intuitions to devise
novel ranking models. The training of EBMs is essentially the pro-
cess of reshaping the energy surface. In the pointwise approaches,
the energies of correct relevance labels should be decreased, and
the energies of incorrect labels should be increased, particularly if
they are lower than that of the correct labels. In the pairwise and
listwise approaches, we look at the energies of more than a single
document. The energies of desired documents are decreased, and
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the energies of undesired documents are increased. Figure 1 and
Figure 2 illustrate the training processes in energy-based ranking.
In this section, we present one new model for each of the three
representative L2R approaches: pointwise, pairwise, and listwise,
respectively.

5.1 Pointwise

While many traditional classification and regression models were
applied to learning to rank, some energy-based loss functions have
not been explored for ranking problems. In this section, we utilize
the square-exponential loss (in Table 2) which has demonstrated
impressive effectiveness in computer vision applications [13, 5,
20]. The per-query loss functional is defined as follows

Lsq_exp =
Di�

j=1

�
Eθ(qi, dij , rij)

�2
+ γ exp

�
− Eθ(qi, dij , r̄ij)

�

where r̄ij is the most offending label for dij given qi (i.e., the label
that has the lowest energy among all incorrect labels). This loss
function aims to push down the energy of correct predictions to-
wards zero while push up the energy of incorrect predictions. To
the best of our knowledge, no prior work has applied the square-
exponential loss to ranking problems.

The energy function can be defined as the absolute value of the
difference between the predicted relevance label and ground truth



label of the document as follows:

Eθ(qi, dij , rij) = ||f(qi, dij ; θ)− rij ||1 (27)

where f is a discriminant function as defined in Section 4.1. In
the experiments, we assume a simple linear model f(qi, dij ; θ) =
θTxi,j. We can use the stochastic gradient descent (SGD) algorithm
to update the parameters θ as follows

θ := θ− η
∂Eθ(qi, dij , rij)

∂θ

�
Eθ(qi, dij , rij)

− γ exp
�
− Eθ(qi, dij , r̄ij)

��

where η is a positive learning rate.

5.2 Pairwise

For the pairwise model, we propose to adapt the learning vec-
tor quantization (LVQ2) loss functional (in Table 2), which has
achieved excellent results in discriminatively training sequence la-
beling systems, particularly speech recognition systems [7, 18, 11].
The loss functional Lp for a pair of documents dij and dik given
query qi is defined as

Llvq2 = min
�
M,max

�
0, Eθ(qi, dij , rij)− Eθ(qi, dik, rik)

��

where dij is preferred over dik for query qi. Such a loss functional
encourages the energy Eθ(qi, dij , rij) of the desired document to
be lower than the energy Eθ(qi, dik, rik) of the other document
with a margin of zero.

We can use the same energy function with that for RankSVM
and RankNet, as defined in Eqn.(9) and Eqn.(17) in Section 4.2. To
estimate the parameters θ, we apply the stochastic gradient descent
(SGD) update rule as follows given each pair of documents:

θ :=θ − η

�
∂Eθ(qi, dij , rij)

∂θ
− ∂Eθ(qi, dik, rik)

∂θ

�

if 0 ≤ Eθ(qi, dij , rij)− Eθ(qi, dik, rik) ≤ M

(28)

where η is the learning rate. Such gradient descent essentially takes
steps proportional to the negative of the difference between the gra-
dients of the energies of the document pair.

5.3 Listwise

Section 4.3 illustrates the ListMLE model from the energy-based
point of view. It essentially pushes down the energies of the top k
documents while pulls up the energies of ALL the documents given
a query. Inspired by this observation and Eqn.(25), we devise a new
listwise approach by defining the following energy function for a
ranked list πi:

Elist(πi; θ) =
k�

j=1

E(xi,π−1
i (j); θ) (29)

−
k�

j=1

ni�

t=j

E(xi,π−1
i (t); θ)P (xi,π−1

i (t); θ)(30)

where E(xi,π−1
i (j); θ) is the energy of the individual document

xi,π−1
i (j) as defined in Section 4.3 for ListMLE. The listwise en-

ergy function Elist(πi; θ) has two parts. The first part (i.e., Eqn.(29))
is the sum of the energies of the top k documents. The second part
(i.e., Eqn.(30), the contrastive term) is the sum of the expected ener-
gies of the k ranked sublists. These sublists include the documents
from the jth position to the end, where j ∈ [1, k], respectively. In

other words, Elist(πi; θ) is the sum of top-k discrepancy between
the energy of the document in the top jth position and the expecta-
tion of energy of documents that are ranked from the jth position
to the bottom. If we want to minimize the energy Elist(πi; θ) of
the whole list, we need to lower the energy of the first part and raise
the energy of the second part. As a result, this will make the top k
documents more distinguishable from the rest of the documents in
the ranked list.

Different from ListMLE, we define P (xi,π−1
i (t); θ) only based

on the rank position t:

P (xi,π−1
i (t); θ) =






1
1+

�ni
t=2 1/ log(t)

, t = 1
1/ log(t)

1+
�ni

t=2 1/ log(t)
, t > 1

(31)

This is motivated by the discounting factor in Normalized Dis-
counted Cumulative Gain (NDCG). The rank position based prob-
ability does not depend on the features of individual documents or
parameters and thus it is more efficient than that defined in Eqn.(26))
for ListMLE.

Given the energy function Elist(πi; θ) defined over the list πi,
we can use various loss functionals of the energy-based models,
e.g., the LVQ2 loss as follows:

Llvq2-list =
1
m

m�

i=1

min
�
M,max

�
0, Elist(πi; θ)

��
(32)

where m is the total number of queries/ranked lists. This loss
aims to minimize Elist(πi; θ) by some margin M . We can use
the stochastic gradient descent to update the parameters as follows:

θ :=θ − η
k�

j=1

�∂E(xi,π−1
i (j); θ)

∂θ

−
ni�

t=j

∂E(xi,π−1
i (t); θ)

∂θ
P (xi,π−1

i (t); θ)

�

if 0 ≤ Elist(πi; θ) ≤ M

It is worth noting that the above model is just one example of
listwise approaches based on the energy oriented perspective of
ListMLE. In the future work, we will explore to cast other exist-
ing listwise L2R models into the energy-based ranking framework,
which may offer further insights into devising new listwise tech-
niques.

6. EXPERIMENTS

6.1 Testbeds

We use the benchmark datasets from the LETOR 4.0 learning
to rank testbeds1. The datasets includes two tasks, MQ2007 and
MQ2008, which are drawn from the data in TREC 2007 and 2008
collection. Table 3 provides the statistics about the two corpora.
The size of the MQ2007 dataset is larger than that of MQ2008 in
terms of the number of queries (1,692 vs. 784) and query-document
pairs (69,623 vs. 15,211). The average number of documents per
query in the MQ2007 dataset is two times larger than that in the
MQ2008 dataset, while the number of documents per query in the
MQ2008 dataset is more varied (22.074 vs. 6.684). Each example
in the dataset stands for a query-document pair, which is repre-
sented by 46 features related to information retrieval such as TF-
IDF similarity measures between query and document, PageRank,
1http://research.microsoft.com/en-us/um/beijing/projects/letor/
/letor4dataset.aspx



Table 3: Statistics of the LETOR 4.0 datasets

MQ2007 MQ2008
#queries 1,692 784

#query-document pairs 69,623 15,211
#Min. documents per query 6 5
#Max. documents per query 147 121
#Avg. documents per query 41.148 19.402
#Std. documents per query 6.684 22.074

and BM25 [22]. The relevance between a query and document is
judged on three levels {0, 1, 2} with 2 being most relevant.

Each task is partitioned for five-fold cross validation, including
training (60%), validation (20%), and test (20%) data sets. All
the proposed energy-based approaches as well as the baselines are
trained using the entire training data, and their performance is eval-
uated on the test data. The parameters are determined on the val-
idation data. We use coarse grid search to tune model parameters
(see Section 7.1) and report the mean test values and perform sta-
tistical significance tests across 30 runs of 5-fold cross validation
(see Section 7.3).

6.2 Baselines

We compare the three proposed energy-based learning to rank
models against the following state-of-the-art pointwise, pairwise,
and listwise learning to rank methods [16]. For pointwise approaches,
we choose L2-regularized linear regression, L2-regularized logis-
tic regression, and support vector machine (SVM). We rely on the
Scikit-learn package [21] to train and test those models with mul-
tiple regularization parameters. For pairwise approaches, we use
RankNet [3] and RankSVM [10]. RankLib2 is used to train and test
RankNet models with default parameters; and we use SVMrank3 to
train and test RankSVM4. For listwise approaches, we use ListMLE
[29] with linear neural network as ranking function. All these base-
lines are also formulated as energy-based ranking models in Sec-
tion 4. We will make our source code publicly available.

6.3 Evaluation Metrics

In the experiments, we use the following metrics for evaluation:
(1) Precision at position k (P@k) where k is set to 5, 10, 15, and 20,
respectively; (2) Mean Average Precision (MAP), which measures
the averaged P@k of all queries; (3) Normalized Discount Cumu-
lative Gain at position k (NDCG@k), which measures the ranking
quality for each query at position k. We choose k as 5, 10, 15, and
20; (4) Mean Reciprocal Rank (MRR), which measures the aver-
aged rank position of the first relevant document for each query;
and (5) Mean Squared Error (MSE), which measures the differ-
ences between predicted relevance labels and ground truth labels.
This metric is only applicable to evaluate pointwise approaches.
We rely on the TREC evaluation script5 to calculate these metrics.

7. RESULTS

7.1 Parameter Analysis

We first examine the impact of parameters γ, M , and k on our
proposed energy-based pointwise, pairwise, and listwise learning

2https://sourceforge.net/p/lemur/wiki/RankLib/
3https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
4http://research.microsoft.com/en-us/um/beijing/projects/letor/
LETOR4.0/Baselines/RankSVM-Struct.html
5http://trec.nist.gov/trec_eval/
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Figure 3: Average metrics in 5 runs of energy-based pointwise

approach with different γ on MQ2007 dataset

● ● ● ● ● ●
●

●

0.
05

0.
15

0.
25

0.
35

gamma

Pr
ec
is
io
n

0 0.001 0.01 0.1 0.2 0.5 0.8 1

MQ2008

● @5
@10
@15
@20

● ● ●
●

●
●

●

●

0.
40

0.
45

0.
50

0.
55

gamma

N
D
C
G

0 0.001 0.01 0.1 0.2 0.5 0.8 1

MQ2008

● @5
@10
@15
@20

Figure 4: Average metrics in 5 runs of energy-based pointwise

approach with different γ on MQ2008 dataset

to rank approaches introduced in section 5, respectively and thus
determine the parameter settings. Figure 3 to 8 show the average
Precision and NDCG values at different levels achieved by different
parameters across 5 runs of 5 fold cross validation on the MQ2007
and MQ2008 tasks.

For pointwise approaches, Figure 3 and 4 show that when γ is
set between 0 and 0.2 on the MQ2007 dataset and 0 and 0.1 on the
MQ2008 dataset, the precision and NDCG values remain stable, in-
dicating that the exponential component in the square-exponential
loss function plays a less important role than the square component
does. Those γ values are good choices. When γ becomes larger,
the metrics start to decrease quickly except the precision values on
the MQ2008 dataset. We select γ = 0.001 for the MQ2007 dataset
and γ = 0.1 for the MQ2008 dataset based on the performance
on the validation set. For pairwise approaches (see Figure 5 and
Figure 6), as M increases from 0.001 to 10.0, the precision and
NDCG scores at all levels decrease on both datasets. Thus, we set
M = 0.001. For listwise approaches (see Figure 7 and 8), we have
two parameters for tuning, M and k. For MQ2007 dataset, the pre-
cision and NDCG values are increasing when k increases from 1
to 5, and they start to decrease when k = 10. Therefore, we set
k = 5. While M is growing until M = 1.0, both precision and
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Figure 5: Average metrics in 5 runs of energy-based pairwise

approach with different M on MQ2007 dataset
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Figure 7: Average metrics in 5 runs of energy-based listwise

approach with different M and k on MQ2007 dataset
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Figure 8: Average metrics in 5 runs of energy-based listwise

approach with different M and k on MQ2008 dataset

Table 4: Parameters for Energy-based Approaches

Model Parameter MQ2007 MQ2008
# of iterations 20 20
L2-Regularizer 0.1 0.1

Pointwise Learning rate 5e-4 5e-4
γ 0.001 0.001

# of iterations 10 10
L2-Regularizer 0.1 0.1

Pairwise Learning rate 1e-4 1e-4
M 1.0 0.1
k 5 1

# of iterations 10 10
L2-Regularizer 0.1 0.1

Listwise Learning rate 1e-4 1e-5
M 1.0 5.0
k 5 5

NDCG scores are increasing and they slighly decrease when M is
getting larger. Thus, we choose M = 1.0. For MQ2008 dataset,
the NDCG values decrease and precision values remain relatively
stable when k is growing, but they reach the peak when k is set to 5,
so we set k = 5. Regarding M , both precision and NDCG values
remain unchanged when M is increasing from 0.001 to 2.0. The
metrics start to increase when M is set to 5.0 and decrease slightly
afterwards. Thus, M = 5.0 seems a good choice.

We also experiment with different settings of other parameters,
e.g., L2-regularizer, learning rate, and number of SGD iterations,
but leave out their analysis. The parameter settings obtained for our
proposed methods are shown in Table 4.

7.2 Analysis of Shaping Energy Surface

Recall that training an energy-based learning to rank model aims
to shape an energy function that produces the best ranking results
given a set of documents retrieved by a query. The best ranking list
is expected to have the lowest energy than all other permutations.
We demonstrate the changes of energy function that is defined on
the listwise approach introduced in Section 5.3. Figure 9 plots the
curve of decreasing rate of energy of sum of documents ranked in
top-5 positions (Eqn.(29)) and that of contrastive documents that
are ranked from the 5-th position to the bottom (Eqn.(30)) over 30
rounds of SGD on the MQ2008 dataset. As we can see, at the be-
ginning of the SGD algorithm, the energy of desired documents
are decreasing sharply (over 100%), and the energy of undesired
documents are also decreasing but with a very tiny rate (around
1%), which is hardly seen in the figure. After 10 rounds of SGD,
the decreasing rate of the energy of desired documents reduces to
10%, while the decreasing rate of energy of undesired documents
remains consistently low. The SGD algorithm ends up with the
energy of desired documents decreased to just 3% of the energy
obtained at the beginning, and energy of undesired documents de-
creased to only 70% compared with the original energy. Hence,
the energy function defined over all ranked lists are decreasing dur-
ing the training phase, due to that the energy of all documents are
pushed down, but not as hard as it is pushed down by the first term.

7.3 Baseline Comparison

The results for the two tasks achieved by different learning to
rank methods obtained using the parameter settings in Section 7.1
are shown in Table 5 and Table 6. Boldface stands for best perfor-
mance with respect to each evaluation metric for pointwise, pair-
wise, and listwise learning to rank methods, respectively. As pair-



Table 5: Average performance on MQ2007 dataset

Method MAP MRR P@5 P@10 P@15 P@20 N@5 N@10 N@15 N@20 MSE
Linear Regression 0.4257 0.5393 0.3797 0.3546 0.3378 0.3238 0.3803 0.4087 0.4399 0.4712 0.3094

Logistic Regression 0.3393 0.4388 0.2915 0.2825 0.2749 0.2684 0.2746 0.2985 0.3249 0.3540 0.4196
SVM 0.3308 0.4129 0.2805 0.2764 0.2708 0.2659 0.2570 0.2835 0.3113 0.3414 0.4241

Energy-based Pointwise 0.4520 0.5622 0.4074 0.3737 0.3509 0.3335 0.4153 0.4402 0.4695 0.4989 0.3060

RankNet 0.4279 0.5316 0.3727 0.3480 0.3337 0.3206 0.3755 0.4042 0.4372 0.4695 -
RankSVM 0.4637 0.5762 0.4133 0.3810 0.3587 0.3380 0.4246 0.4517 0.4825 0.5091 -

Energy-based Pairwise 0.4583 0.5672 0.4078 0.3773 0.3556 0.3371 0.4162 0.4445 0.475 0.5043 -
ListMLE 0.3967 0.5048 0.3412 0.3218 0.3116 0.3023 0.3457 0.3748 0.4074 0.4395 -

Energy-based Listwise 0.4212 0.5306 0.3692 0.3416 0.3266 0.3125 0.3779 0.4043 0.4351 0.4653 -

Table 6: Average performance on MQ2008 dataset

Method MAP MRR P@5 P@10 P@15 P@20 N@5 N@10 N@15 N@20 MSE
Linear Regression 0.4332 0.4958 0.3214 0.2367 0.1845 0.1508 0.4231 0.4733 0.4917 0.5002 0.2878

Logistic Regression 0.3290 0.4023 0.2306 0.1916 0.1584 0.1299 0.2919 0.3666 0.3975 0.4069 0.3725
SVM 0.3124 0.3670 0.2194 0.1885 0.1569 0.1293 0.2645 0.3463 0.3787 0.3885 0.3769

Energy-based Pointwise 0.4651 0.5250 0.3464 0.2469 0.1887 0.1534 0.4618 0.5034 0.5173 0.5244 0.2764

RankNet 0.4360 0.4893 0.3168 0.2329 0.1816 0.1481 0.4181 0.4694 0.4875 0.4960 -
RankSVM 0.4707 0.5266 0.3477 0.2487 0.1894 0.1536 0.4630 0.5080 0.5214 0.5286 -

Energy-based Pairwise 0.4677 0.5279 0.3412 0.2464 0.1892 0.1541 0.4585 0.5043 0.5184 0.5262 -
ListMLE 0.4308 0.4877 0.3128 0.2353 0.1821 0.1491 0.4159 0.4723 0.4889 0.4980 -

Energy-based Listwise 0.4445 0.5046 0.3278 0.2402 0.1843 0.1497 0.4337 0.4849 0.4995 0.5073 -
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Figure 9: The effect of training on the energy surface in the

listwise case on MQ2008 dataset

wise and listwise L2R approaches are not designed to predict rele-
vance for documents, we do not report the MSEs obtained in these
two cases.

In comparison with the results achieved on the two tasks, the pre-
cision scores (MAP and P@N) obtained on the MQ2007 dataset are
consistently higher than that obtained on the MQ2008 dataset for
all L2R approaches. This may be due to the fact that the num-
ber of query-document pairs of the MQ2007 dataset is four times
larger than that of the MQ2008 dataset. Therefore, more training
instances contribute to the better performance of identifying rele-
vant documents. On the contrary, the scores (MRR and NDCG@N)
achieved on the MQ2007 dataset is lower than that achieved on the

MQ2008 dataset, which may be caused by the larger number of
averaged documents per query in the MQ2007 dataset (see Table
3).

For pointwise approaches, linear regression yields better results
in terms of all the evaluation metrics on both tasks than the other
two pointwise baselines, logistic regression and SVM do. Our
proposed energy-based pointwise method achieves the best perfor-
mance over all the pointwise baselines with statistically significant
improvement (p < 0.001) for all precision and ranking evaluation
metrics. On the MQ2007 dataset, the energy based pointwise ap-
proach achieves more than 20% of precision values than logistic re-
gression and SVM do, and 3% than linear regression does. In terms
of NDCG values, the proposed model can obtain more than 40% of
improvement compared with logistic regression and SVM, and 5%
of improvement over linear regression. On the MQ2008 dataset, the
improvement on the precision values are over 15% compared with
logistic regression and SVM, and over 1% compared with linear re-
gression. The model also yields significant MSEs on both datasets
with p = 0.05 and p < 0.001. It outperforms linear regression by
1.1% on the MQ2007 dataset and 3.96% on the MQ2008 dataset.

For pairwise approaches, RankSVM shows better results than
RankNet does for all evaluation metrics on both tasks. Our pro-
posed energy-based pairwise method outperforms RankNet signif-
icantly (p < 0.001) on all evaluation metrics on both datasets.
The model outperforms RankNet in terms of precision values by
at least 5% and NDCG values by 7% on the MQ2007 dataset; and
it achieves more than 4% of precision values and 6% of NDCG
values on the MQ2008 dataset. The energy-based pairwise ap-
proach yields competitive results with RankSVM does with slightly
lower precision and ranking scores on both datasets (except MRR
and P@20 obtained on the MQ2008 dataset) without significant
difference. The difference of all evaluation metrics achieved by
RankSVM and our proposed model is just around 1% for both
tasks. The best performance obtained by pairwise approach is higher
or competitive with the best performance obtained by pointwise
L2R approaches.



For listwise approaches, the results obtained by ListMLE and
our proposed models are slightly inferior to that obtained by point-
wise and pairwise approaches for both tasks. Our proposed energy-
based listwise approach yields significant results over ListMLE (p =
0.01) on both datasets in terms of all precision and NDCG scores.
On the MQ2007 dataset, the proposed model outperforms ListMLE
by 3% for precision values and 5% for NDCG values. On the
MQ2008 dataset, the improvement on the precision values is over
1% except P@20 and that on the NDCG values is over 1%.

In summary, our proposed energy-based pointwise and listwise
methods surpass the corresponding learning to rank baselines with
significant improvement. For the pairwise approach, the proposed
model outperforms RankNet with a significant margin and achieves
competitive results with RankSVM. Our results differ from the pre-
vious ones on LETOR in the following way. The energy-based
pairwise method achieves the best performance consistently across
the two tasks, despite the fact that the previous studies favored list-
wise approaches [29, 4]. This may be due to the fact that the tasks
used for experiments are different. The dataset used for their study
is LETOR 3.0, while we use LETOR 4.0 for experiments. Another
possible reason is that we only use linear models to construct our
energy functions in the experiments. We leave experimenting with
nonlinear models and larger testbeds in our future work.

8. CONCLUSION AND FUTURE WORK

In this paper, we establish the link between learning to rank and
energy-based learning. We cast various existing L2R models in
a unified energy-based ranking framework. Moreover, we present
several new energy-based ranking models based on the established
link. The experiments are conducted on the LETOR 4.0 benchmark
datasets and demonstrate the effectiveness of the proposed models.

This work is an initial step towards a promising research direc-
tion. In the future work, we will cast more sophisticated L2R mod-
els in the energy-based framework and propose new ranking al-
gorithms accordingly. Furthermore, we plan to investigate latent
variable architectures where energy functions depend on a set of
hidden variables whose correct values are unobserved. The use of
latent variables in ranking may be able to model the hidden charac-
teristics of queries, documents, and relevance. We will also explore
deep architectures based on the energy-based models with hierar-
chical latent variables. Last but not the least, the existing energy-
based learning theories may not be directly applied to ranking. We
will conduct theoretical analysis for energy-based ranking such as
necessary or sufficient conditions for energy and loss functions and
generalization ability and statistical consistency of energy-based
ranking models. The new theories may utilize the energy-based
perspective to help explain and justify the choices of loss functions
in L2R.
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