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ABSTRACT
Most of the current recommender systems heavily rely on
explicit user feedback such as ratings on items to model
users’ interests. However, in many applications, it is very
hard to collect the explicit feedback, while implicit feedback
such as user clicks may be more available. Furthermore, it
is often more suitable for many recommender systems to ad-
dress a ranking problem than a rating predicting problem.
This paper proposes a latent pairwise preference learning
(LPPL) approach for recommendation with implicit feed-
back. LPPL directly models user preferences with respect
to a set of items rather than the rating scores on individual
items, which are modeled with a set of features by ana-
lyzing clickthrough data available in many real-world rec-
ommender systems. The LPPL approach models both the
latent variables of group structure of users and the pairwise
preferences simultaneously. We conduct experiments on the
testbed from a real-world recommender system and demon-
strate that the proposed approach can effectively improve
the recommendation performance against several baseline
algorithms.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering

Keywords
Recommender systems, Implicit feedback, Pairwise prefer-
ences

1. INTRODUCTION
Recommender systems utilize different types of user in-

put. The most common one is the high quality explicit feed-
back such as movie ratings. This is the explicit input by
users regarding their interests in items. The vast majority
of the literature in the field is focused on explicit feedback,
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due to the convenience of using this kind of explicit infor-
mation. However, in many real-world applications, these
explicit ratings are hard to collect and user feedback can be
implicitly expressed by user behaviors such as clicks, book-
mark, purchase history and even mouse movement. In the
past decade, the implicit feedback, mainly in the form of
clickthrough, has been heavily studied and utilized in web
search to improve the relevance of the ranking models. Con-
sequently, an active research field in information retrieval,
learning to rank [9], has emerged.

In fact, it is more suitable for many recommendation ap-
plications to address a ranking problem than a rating pre-
dicting problem [8]. For example, most real-world recom-
mender systems provide the services of the Top-N recom-
mendation, which essentially involves solving a ranking prob-
lem. The rating prediction accuracy, which is the objec-
tive in many existing methods, is not always consistent with
ranking effectiveness. Ratings are often predicted indepen-
dently for each item while rankings characterize relations
among multiple items. Therefore, models for relations and
preference comparisons are more desirable than models for
individual ratings in recommendation algorithms.

In this paper, we propose a latent pairwise preference
learning (LPPL) approach for recommendation from im-
plicit feedback. LPPL directly models user preferences with
respect to a set of items rather than the rating scores on indi-
vidual items. Pairwise preference relations over items are de-
rived from clickthrough data which are abundantly available
in many real-world recommender systems. In particular, the
pairwise preferences are modeled by a logistic function over
a set of features. The latent variables in LPPL can capture
the group structure of users. The experiments on the testbed
from an online scientific community (i.e., nanoHUB) show
that the proposed models can effectively improve the rec-
ommendation performance. To the best of our knowledge,
this is the first learning to rank work proposed for real-world
recommender systems with implicit feedback.

2. RELATED WORK
To address the implicit feedback, matrix factorization tech-

niques are proposed in [4] to incorporate rich user and item
information into recommendation, but the work mainly tar-
gets on solving a prediction problem, not a ranking prob-
lem. In the recent years, Learning to rank (L2R) has been
intensively investigated for web search. The goal is to con-
struct a model or a function for ranking entities. Three main
classes of L2R approaches are pointwise, pairwise and list-
wise approaches, respectively [9]. These methods are built



on a solid foundation because it has been shown that they
are closely related to optimizing the commonly used ranking
criteria. Although valuable work has been done for learning
to rank for ad-hoc retrieval, very limited research has been
conducted for recommender systems.

A more general formulation, which is called preference
learning, has been studied in the machine learning commu-
nity. Preference learning is about inducing predictive pref-
erence models from empirical data, and L2R can be viewed
as one of its special cases. A review paper on preference
learning for recommender systems can be found in [3]. A
more related work to ours is the probabilistic latent prefer-
ence analysis for collaborative filtering [8] which is based on
the Bradley-Terry model for modeling preferences on pairs
of items. However, they only use the collaborative infor-
mation, while our LPPL models utilize both collaborative
and content information such as item and user profiles. Fur-
thermore, their evaluations are still based on explicit user
feedback, while our experiments are conducted on implicit
feedback collected from a real-world recommender system.

3. THE APPROACH

3.1 Setting
The recommendation task in this paper is motivated by

the one in nanoHUB1. nanoHUB is a popular online scien-
tific community for research, education and collaboration in
nanotechnology. It comprises numerous resources with an
active user base. These resources include lectures, seminars,
tutorials, publications, events and so on. There exists very
rich information about resources and users. Most resources
contain detailed information such as titles, abstracts and
tags. Many registered users also provide detailed profiles
about themselves such as their research interest, education
and affiliation. The recommendation task is to show a list
of other useful resources to the user when he/she is view-
ing a specific resource, which is something like a “See Also”
functionality. This task is similar to Top-N recommendation
where a few specific items are suggested to the user so that
they are likely to be very appealing to him/her. While our
models are presented in the context of the “See Also” rec-
ommendation, they can be readily adapted to more general
recommendation tasks such as Top-n recommendation. In
fact, for both tasks, a ranking problem is a more natural for-
mulation than a rating prediction problem. In addition, the
users in the scientific communities such as nanoHUB tend
not to give explicit ratings to the resources, even though
they may have clear preference in their minds.

3.2 Pairwise Preference from Implicit Feed-
back

One simple choice of utilizing implicit feedback is to as-
sume that clicked resources are relevant resources and re-
sources not clicked are irrelevant. However, this is not an
optimal choice because clicked resources may not be equally
relevant and some resources are not clicked due to some
other reasons. For example, in a list of 10 recommended re-
sources, a user may only carefully look at the top 2 resources,
access the second one and ignore all of the rest 8 resources.
It is not reasonable to assume all the 8 resources are irrele-
vant. Based on the above observation, we adopt a pairwise

1http://www.nanohub.org

comparison approach to utilizing implicit feedback. In par-
ticular, the pairwise approach compares the probability of
relevance of two resources. If a resource in the recommen-
dation list is accessed by the user, the resource tends to be
more relevant than the other resources that are not accessed
but ranked higher in the list than the accessed resource. A
similar assumption was adopted to utilize implicit feedback
information for improving accuracy in web search [7].

3.3 Latent Pairwise Preferences Learning
In this section, we propose two latent pairwise preferences

learning models (i.e., LPPL 1 and LPPL 2) for learning from
pairwise preferences derived from implicit feedback.

3.3.1 LPPL 1
For a user u viewing the resource c, if resource i is labeled

as being more relevant than resource j, we denote lu,c
i,j = 1;

otherwise lu,c
i,j = −1. We let Ψ denote the set of (u; c; i; j)

quadruples for which the preference lu,c
i,j is observed.

Similar to probabilistic latent semantic indexing (pLSA)
[5], we introduce a hidden state variable z to capture the
group structure of the users. P (lu,c

i,j |u, c, i, j) can then be
decomposed as:

P (lu,c
i,j |u, c, i, j) =

KX

z=1

P (z|u)P (lu,c
i,j |c, i, j, z) (1)

where z is a multinomial variable (z ∈ K) that denotes
the user groups while the mixing proportions P (z|u) cap-
ture the strength of a user’s membership with each group.
P (lu,c

i,j |c, i, j, z) is the mixture component with each compo-
nent belonging to the same parametric family of distribu-
tions. In pLSA for collaborative filtering [5], Gaussian dis-
tribution is often assumed to model rating values which are
of numeric scale. In LPPL 1, we designate a logistic function
over the preference comparisons to model P (lu,c

i,j |c, i, j, z) as:

P (lu,c
i,j |c, i, j, z) = σ

“ VX

v=1

λzv

`
fv(c, i)− fv(c, j)

´”
(2)

where σ(x) = 1/
`
1+exp (−x)

´
is the standard logistic func-

tion and λzv is the weight of the user group z for the vth

feature fv(c, i).
Different types of features can be incorporated in fv(c, i)

for making pairwise comparison between a pair of resource
candidates. For example, one type of features can be used to
measure the content similarity between a resource candidate
i and the current resource c being accessed. The intuition of
this type of features suggests that users may prefer resource
candidates that is more similar to the current resource that
the user is accessing. Another type of features can be used
to measure the authority of the authors for different resource
candidates. The intuition of this type of features suggests
that users may prefer resource candidates from authoritative
creators than less authoritative creators.

Similar to pLSA, we can derive an Expectation-Maximization
(EM) algorithm to estimate the parameters by iterating E-
step and M-step until convergence as follows [5]. In E-step,
we compute the posterior probability of z given the quadru-
ple (u; c; i; j) as:

P (z|u, c, i, j) =
P (z|u)σ

“
lu,c
i,j

PV
v=1 λzv

`
fv(c, i)− fv(c, j)

´”

PK
z�=1 P (z�|u)σ

“
lu,c
i,j

PV
v=1 λz�v

`
fv(c, i)− fv(c, j)

´”



By optimizing the auxiliary Q-function, we can derive the
following M-step update rules:

λ∗
z· = arg max

λz·

P
(u,c,i,j)∈Ψ P (z|u, c, i, j) log

„

σ
“
lu,c
i,j

PV
v=1 λzv

`
fv(c, i)− fv(c, j)

´”«

P (z|u) =

P
(u�,c,i,j)∈Ψ:u�=u P (z|u, c, i, j)

PK
z�=1

P
(u�,c,i,j)∈Ψ:u�=u P (z�|u, c, i, j)

As there is no closed form solution to the optimization prob-
lem of λz·, we can resort to Quasi-Newton methods [10].

3.3.2 LPPL 2
In LPPL 1, P (z|u) is modeled with a separate non-parametric

multinomial distribution for each user. In consequence, the
model cannot easily generalize P (z|u) to unseen users be-
yond the training collection, because each parameter in multi-
nomial distribution specifically corresponds to a training in-
stance. pLSA encounters a similar problem and a “fold-in”
process is suggested in [5] by re-learning all training docu-
ments with the new document to generate an updated pa-
rameter estimation. However, the “fold-in” process is time-
consuming, and moreover, we do not have any relevance
judgment for new users to learn from.

To address this problem, we propose LPPL 2 to model the
mixing proportions by a soft-max function, i.e., P (z|u) =
1

Zu
exp(

PS
s=1 αzsgus) where Zu is the normalization factor

that scales the exponential function to be a proper proba-
bility distribution (i.e., Zu =

PK
z=1 exp(

PS
s=1 αzsgus)). In

LPPL 2, user u is represented by a bag of user features
(g1, ...gS) which can be derived from the user’s profile and
usage information. αzs is the parameter associated with the
features. The mixture component is still a single logistic
function as in Eqn. (2). By plugging the soft-max function
into Eqn. (1), we can get

P (lu,c
i,j |u, c, i, j) =

1

Zu

KX

z=1

exp(
SX

s=1

αzsgus)σ
“ VX

v=1

λzv
`
fv(c, i)−fv(c, j)

´”

Because αzj is associated with each user feature instead
of each training instance, the above model allows the esti-
mated αzs to be applied to any unseen user. The advan-
tage of LPPL 2 over LPPL 1 is that LPPL 2 is inherently
generalizable to new users and it can exploit the rich user
information such as those in nanoHUB by conveniently in-
corporating them as features.

A similar EM algorithm can be derived as follows (the
update equation for λz is the same as LPPL 1):
E-step:

P (z|u, c, i, j) =
exp(

PS
s=1 αzsgus)σ

“
l
u,c
i,j

PV
v=1 λzv

`
fv(c, i) − fv(c, j)

´”

PK
z�=1

(exp(
PS

s=1 αz�sgus)σ
“

l
u,c
i,j

PV
v=1 λz�v

`
fv(c, i) − fv(c, j)

´”

M-Step:

α∗z· = arg max
αz·

P
(u,c,i,j)∈Ψ P (z|u, c, i, j) log

“
1

Zu
exp(

PS
s=1 αzsgus)

”

Based on the pairwise preferences, finding the optimal
ranking turns out to be a NP-complete problem, which can
be shown via reduction from the cyclic-ordering problem [2].
Similar to the approximation strategy in [8], we can use the
following scoring function to efficiently produce a ranking

Table 1: Features used in the LPPL models. “B”
denotes the feature takes boolean values and “N”
represents numerical values

Feature Description Type
f1 Sim in title between i and c N
f2 Sim in full text between i and c N
f3 Overlap in author between i and c B
f4 Overlap in tag between i and c N
f5 Overlap in category between i and c B
f7 # of total clicks on i N
f6 # of clicks on i in the past 3 months N
f8 # of contributions of the author N
f9 Category: Courses B
f10 Category: Simulation tools B
f11 Category: Publications B
f12 Category: Downloads B
f13 Category: Animations B

g1 Organization B
g2 # of contributions N
g3 Top 50 tags B
g4 tf-idf of the most 100 common words N

for LPPL:

ru,c
i =

KX

z=1

P (z|u)σ
` VX

v=1

λzvfv(c, i)
´

4. EXPERIMENTS

4.1 Experimental Setup
We test our proposed models on the nanoHUB dataset.

We use the clickthrough data from March 1, 2011 to June
30, 2011 as training data, and use the month of July, 2011
as test data. The training set contains 3,064 users and 2,335
resources and the test set includes 1,609 users and 1,928 re-
sources. We use the strategy described in Section 3.2 to
extract the pairwise preferences from the clickthrough data.
One baseline method is content based (CB): rank candi-
date resources according to the descending order of cosine
similarity between the resource being viewed and the candi-
date resources. The tf-idf weighting scheme is used after the
stop words are removed. Another baseline includes wAMAN
proposed in [6] for weighting implicit feedback, which is a
collaborative filtering based approach. In addition, a hybrid
model (CB+wAMAN) is also adopted as a baseline, which
is a heuristic linear combination of CB and wAMAN.

As discussed in Section 3.3, LPPL 1 needs to infer the
group membership P (z|u) for the unseen user u in the test
set. In the experiments, we estimate P (z|u) based on the av-
erage of the group memberships of the user’s 5 most similar
neighbors that appear in the training set. The user simi-
larity is also computed in the same way with the resource
similarity (based on the vector space model (VSM) by de-
fault). Table 1 contains the features f and g that are used
in the experiments for the LPPL models.

We use Mean Percentage Ranking (MPR) [6] to evalu-
ate the prediction accuracy, which is a typical evaluation
metric for recommendation with implicit feedback. MPR is
recall-oriented because precision based metrics are not very
suitable as they require knowing which resources are unde-
sired to a user. Lower values of MPR are more desirable.
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Figure 1: Impact of varying the number of latent
factors in LPPL 1 and LPPL 2

The expected value of MPR for random predictions is 50%,
and thus MPR > 50% indicates an algorithm no better than
random.

4.2 Effect of Number of Latent Factors
Figure 1 shows the evaluation results of the LPPL models

with various number of latent user groups (K), ranging from
1 to 20. When K = 1, both models are degenerated to the
same model with the single component of logistic function,
and thus give the identical results. LPPL 1 and LPPL 2
achieve their best performance at K = 7 and K = 5, respec-
tively. After that, the performance of the models tends to
degrade as K increases, probably due to over-fitting. When
K > 16, the performance of LPPL 2 deteriorates much faster
than LPPL 1. This indicates that LPPL 2 may suffer more
from over-fitting when the number of latent factors increases.
We will explore a regularization approach to alleviate the
over-fitting problem in the future work.

4.3 Comparison with Other Methods
In this subsection, we compare the LPPL models with

other methods. From Table 2, we can see that both mod-
els perform better than the baselines (CB, wAMAN and
CB+wAMAN), with LPPL 2 showing more substantial im-
provement. It is worth noting that the initial recommenda-
tion results in nanoHUB are based on CB and thus there is a
presentation bias in favor of the CB method. It is expected
that LPPL can show better results when the presentation
bias is eliminated. In addition, wAMAN performs much
worse than the other methods, probably due to the lack of
collaborative information in the training data. An ensemble
of CB and wAMAN cannot achieve as good results as CB.

Table 2: Comparison of various methods in MPR
CB wAMAN CB+wAMAN

MPR 0.225 0.366 0.243

LPPL 1 LPPL 2
MPR 0.214 0.197

4.4 Effect of Document Similarity
The evaluations rely on the computation of document sim-

ilarity, such as in extracting features for LPPL, in identi-
fying similar users, and in the content-based (CB) recom-

mendation method. In this section, we investigate the ef-
fect of document similarity. Specifically, we compare three
models of document similarity: Vector space model (VSM),
Language model (LM), and Jaccard Index frequency-based
model (Jaccard) [1]. Table 3 shows the results. LM seems
not a desired choice as all the three methods have the worst
performance on LM. On Jaccard, CB obtains a worse result
than on VSM, but both LPPL models get better perfor-
mance than on VSM while the improvement is not substan-
tial.

Table 3: Comparison of various document similarity
models in MPR.

VSM LM Jaccard
CB 0.225 0.247 0.239

LPPL 1 0.214 0.223 0.206
LPPL 2 0.197 0.208 0.192

5. CONCLUSION
This paper proposes a latent pairwise preference learn-

ing approach for recommendation from implicit feedback.
We conduct the experiments on the testbed from an online
scientific community and demonstrate that the proposed ap-
proach can effectively utilize implicit feedback. In the future
work, we will conduct more comprehensive evaluations for
the proposed models. We will also extend the models to
capture latent groups of resources.
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