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ABSTRACT

Face recognition has been an active research field for a long
time, and recently new challenges have arisen in designing
cloud-assisted face recognition algorithms. In a cloud as-
sisted face recognition system, mobile devices acquire the
data images; then, in order to unbind the cloud face recog-
nition algorithm from the particular features extracted at the
mobile device, the images are encoded and uploladed into
the cloud. In this framework, it is important to understand
and control the effect of the image compression stage per-
formed at the mobile device on the performances of the face
recognition algorithms realized within the cloud. Here, we
analyze the impact of wavelet domain image compression on
the Individual Adaptive (IA) L1-PCA subspace computation
and assess the performance of a classifier operating on data
characterized by increasing compactness and accordingly de-
creasing accuracy.

Index Terms— Cloud assisted, face recognition, L1-
PCA, wavelet.

1. INTRODUCTION

Face recognition has been an active research field for a long
time, as testified by a huge literature [1], where Principal
Component Analysis (PCA) and Linear Discriminant Anal-
ysis (LDA) play the lion role among holistic approaches. In
particular, recent developments on the L1-norm [2],[4], have
yielded an L1-PCA based algorithm representing the main
features of a random face with a small number of L1-PCA
components and associating a new unknown face image to
the L1-nearest class in the database.
Thanks to L1-norm outlier rejection property, L1-PCA

based algorithms [3] proved to be resilient in presence of
partial occlusion of the test images. The Individual Adap-
tive L1-PCA based face recognition algorithm was also de-
veloped in [5] where, given the total number of principal
components, a different number of components is adaptively
allocated to each of the dataset classes.

Fig. 1. Cloud-assisted Face Recognition Architecture.

Recently, due to the increasing interest in cloud-based
services [6], the research on face recognition has found new
challenges in designing algorithms suited for being realized
by mobile devices connected to a network or to a cloud
[7]. Fig. 1 represents an example of cloud-assisted face
recognition architecture. In such framework, computation-
ally heavy tasks as feature extraction and comparison with
huge databases can be conveniently offloaded by the mobile
device towards the cloud; then, in-cloud servers, possibly or-
ganized so as to minimize the time required for recognition
[8], realize the recognition task.
In a cloud assisted face recognition system, after mobile

devices have acquired the data images, they either compute
and transmit the image features needed for classification or
transmit the image itself. The first solution alleviates the
amount of data to be transmitted from the mobile to the cloud;
still, it requires a larger computational effort by the mobile
device. More relevantly, it bounds the cloud face recognition
algorithm to the particular feature extraction stage adopted at
the mobile device, definetely limiting the actual recognition
power left to the cloud.



Here, we consider the above described cloud-assisted
recognition framework, and we address the case in which
the image is compressed in the wavelet domain and then en-
coded and sent to the cloud, which in turn could implement
different techniques and choose the one providing better dis-
tinctiveness between different classes. In this framework, it
is important to understand and control the effect of the im-
age compression stage performed at the mobile device on
the performances of the face recognition algorithms realized
within the cloud. Here, we focus on the impact of wavelet
domain image compression on the Individual Adaptive (IA)
L1-PCA subspace computation [5] and we assess the per-
formance of a classifier operating on data characterized by
increasing compactness and accordingly decreasing accuracy.
The rest of the paper is organized as follows: in Sect.2

we recall the wavelet domain signal model, in Sect.3 perfor-
mances on wavelet-domain compressed images, Sect.4 shows
the experimental studies on three face data sets. Conclusion
and further research directions are illustrated in Sect.5.

2. SIGNAL MODEL

Since the pioneering work [9], representation of a signal
through a shaped oscillating wave with fast decay has found
application in a variety of processing tasks. When applied
to image compression, the Discrete Wavelet Transform [14]
splits the image components into different subbands and al-
lows to identify visually relevant information from each sub-
band; therefore, it is adopted in encoding standard [10] as
well as in different sparsity seeking image representation pro-
cedures [11].
The impact of different wavelet components on the dis-

criminatory power of face recognition algorithms is studied
in [12], where the authors analyze the application of LDA to
study various facial features in spatial and wavelet domain,
or in [13] they study the LDA applied to face recognition
problem the small sample size problem occurs.
Herein, we instead consider the effect on face recognition

algorithm performances due to image compression. In fact,
in a cloud-assisted face recognition system, the test images
are acquired at the mobile device, and are firstly encoded
and then uploaded into the cloud to offload the computation;
wavelet domain image data reduction tightly models differ-
ent image compression procedures performed at the mobile
device.
Specifically, let us denote by ξ the D-dimensional vector

representing the image under concern in lexicographic form,
and by x the D-dimensional vector representing its Discrete
Wavelet Transform (DWT) obtained by recursive applica-
tion of Daubechies filter [14]. In this domain, application
of the Daubechies filter splits the image spectrum into four
subbands the first of which, also known as LL subband, con-
tains horizontal lows/vertical lows. Recursive application of

Daubechies filters on the LL subband obtains L > 2 levels
of decomposition of the original image into octave bands.
Fig. 2 shows the DWT of three face images from differ-

ent databases using Daubechies filter and Lmax = 2 levels
of decomposition.
In the following, we consider the case, illustrated in Fig.3,

in which the image a) is acquired, b) is decomposed into
Lmax octave bands, and image compression is realized by
discarding the subbands relative to the l-th higher frequency
layers, and (c) the residual Lmax−l lower frequency DWT
coefficients are sent.

Fig. 2. A subject of Yale (a), ORL (b) and Aberdeen (c)
database with its wavelet transform using Daubechies filter.

Fig. 3. Face recognition offloading: stages performed at the
mobile device: (a) image acquisition, (b) image encoding
wavelet domain data reduction, (c) encoded image uploading.

3. CLASSIFICATION USING WAVELET-DOMAIN
REDUCED REPRESENTATION

Herein, we address the performance of the IA L1-PCA Face
Recognition algorithm in [5] on images encoded by discard-
ing higher frequency layers in the wavelet domain. To this
aim, let us here briefly recall the basics of IA L1-PCA. Let
C denote the number of classes, and let the j-th class be
characterized with N training samples, represented by a D-
dimensional vector x(j)

n , n = 1, · · ·N . Let us then collect the



N training samples of each class within a D × N training
matrix

X(j) =
[
x

(j)
1 , x

(j)
2 , ..., x

(j)
N

]
, j = 1, · · ·C

The class training matrix is then zero-centered by subtracting
the class sample-mean µ(j) = 1

N
X(j)1N . The Individual

L1-PCA then envisages the evaluation of the class-related
subspace as

Q
(j)
I L1

= arg max
Q∈QD×K

QT Q=I

∥XTQ∥1. (1)

The classification stage of a test vector xt encompasses
i) subtraction of the mean of the j-th class µ(j) from xt, ii)
projection of the zero-centered test data point onto the j-th
L1 subspace Q

(j)
L1
, iii) selection of the nearest class-related

subspace. Thereby, the vector xt is classified as belonging
to the ĵI L1 class, being ĵI L1 computed as
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1≤j≤C
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T(j)
L1

(xt − µ
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(2)
The Individual Adaptive L1-PCA extends the above de-

scribed Individual L1-PCA by allocating a total number of
KC principal components to different classes allowing the
computed L1-subspace of different classes to have -possibly-
different rank. The rank value K(j), j = 1, · · ·C required
to represent the subspace of the particular face image class
is selected as a function of the within-class sample vari-
ance. Specifically, K(j) is set equal to K

(j)
0 + ∆K(j), be-

ing K
(j)
0 , j = 1, · · ·C a set of constant values such that

∑C
j=1 K

(j)
0 < KC and

∆K(j) =

⎛

⎝KC −
C∑

j=1

K
(j)
0

⎞

⎠ tr(Cov(j))
∑C

j=1 tr(Cov(j))
. (3)

whereCov(j) denotes the covariance matrix for the j-th class

Cov(j) =
1

N

[
N∑

i=1

(X(j)
i − µ

(j))(X(j)
i − µ

(j))T
]

(4)

With these positions, we now investigate the impact of
dimensionality reduction in the wavelet transform domain on
IA L1-PCA. Specifically, we apply Daubechies filter with
Lmax levels of decomposition to all the class images, and
consider the cases in which a restrained fraction of the DWT
coefficients are retained, i.e. we set L = Lmax−l, being l =
1, 2. We refer to this approach as Wavelet Domain Reduced
(WDR) IA L1-PCA. For comparison sake, we consider the
case where all the DWT coefficients are retained, i.e.L =
Lmax, which coincides with IA L1-PCA [5].

4. EXPERIMENTAL RESULTS

In this section we want to assess the resilience of IA L1-PCA
with respect to wavelet domain data reduction by comparing
the performance of WDR IA L1-PCA and IA L1-PCA. We
consider on three different database: Extended Yale Face
Database, ORL Database and Aberdeen Database. For the
sake of completeness, we also show the resilience of one of
the major holistic competitors, i.e. the LDA algorithm [?].
As a face recognition performance metric, we here con-

sider the average error, defined as the NE(p) number of
classification error as a function of the number p of PCs,
normalized with respect to the number of classes C , the num-
ber Nt of test images per class per run, and the number of
run Nr . The average error equals the probability of face
misclassification:

PE(p) ≈
NE(p)

NC · Nr ·Nt
(5)

The analysis is applied both on original and partially oc-
cluded test and training images. The Figs. 4-6 show ex-
amples of the occluded images and their wavelet tranform
considering each database; further details on the occlusion
model and on the experimental settings are given in the fol-
lowing subsections.

Fig. 4. A subject of Aberdeen database affected by partial
occlusion with wavelet application.

4.1. Wavelet Domain Reduced (WDR) Individual Adap-
tive L1-PCA

4.1.1. Extended Yale Face Database

We consider the Extended Yale Face database, built byC = 8
classes, of 25 images each. In the following experiments,
we randomly select 8 images training per class and use the
remaining 17 images for testing. The image size is 64x64
pixels 1, so D = 4096, and we carried out 50 independent

1The cropped images are used.



Fig. 5. A subject of Yale database affected by partial occlu-
sion with wavelet application.

Fig. 6. A subject of Orl database affected by partial occlusion
with wavelet application.

runs. We apply Daubechies filter, with Lmax = 4 levels of
decomposition. We consider WDR IA L1-PCA when half of
the DWT coefficients are retained, i.e. L = Lmax−2, and
compare it with IA L1-PCA, where all the DWT coefficients
are retained, i.e.L = Lmax . In both cases, the IA L1-PCA
uses up to 48 PCs.
We consider a Percentage of Occluded Images (POI)

pj, j = 1 · · ·C of the j-th class, regardless if training or test
images, to be partially occluded. In order to model random
occlusions, we consider occluding patches of size [15×15,
20×20, 25×25, 30×30] pixels, filled with “salt and pepper”
noise modeling random visual content of the occluded area.
We set p1 = p2 = 10%, p3 = p4 = 30%, p5 = p6 = 50%,
and p7 = p8 = 70%.
Fig.7 shows the average error of WDR IA L1-PCA and

IA L1-PCA for the Extended Yale Face database, as a func-
tion of the number of principal components per class; for
comparison sake, we report also the results achieved by L1-
PCA using up to 20 PCs in a common subspace; the algo-
rithms are referred to as “Adaptive Individual” and “Com-
mon” in the legend. It is interesting to observe that the WDR
IA L1-PCA may outperform IA L1-PCA, i.e. wavelet do-
main reduction from L = Lmax to L = 2 is even beneficial;
in fact, discarding higher wavelet decomposition layers corre-

Fig. 7. Recognition performance of WDR IA L1-PCA and
IA L1-PCA [5] (“Adaptive Individual”) for the Extended
Yale Face database; L1-PCA (“Common”) is also reported
for comparison’s sake.

sponds to discarding less relevant visual data. This is particu-
larly relevant for the IA L1-PCA, that allows the most suited
distribution of the PCs to each classes, and thanks to the
wavelet reduction operates on data cleaned by less relevant
visual details. Clearly, a tradeoff is encountered in reducing
the image representation accuracy and properly characteriz-
ing the image visual features. Besides, let us notice that the
selected coefficients could be further exploited by means of
polynomial classification; this is left for further study [17].

4.1.2. Aberdeen Database

For the Aberdeen database we have C = 8 number of classes,
for each class we have 18 total images, and we choose N
= 8 random images from each dataset for training and the
remaining 10 images for testing. The dimension of each
images is 64x64 pixels, so D = 4096, and we carried out 50
independent experiments. Regarding the number of principal
components we have: for the ”common” subspace up to 20
PCs and for the ”adaptive individual” subspace up to 48 PCs
both with and without wavelet application.
We set POI as p1 = p2 = 10%, p3 = p4 = 30%,

p5 = p6 = 50%, p7 = p8 = 70%; the corruption affects
for both the training and testing set of each class. In ad-
dition we choose the occluding patch size in this range =
[15×15, 20×20, 25×25, 30×30] pixels. In the results, we
observe that the WDR version of different classifiers often
outperforms the basic one. SpecificallyWDR ”common” L1-
PCA is better than the ”common” L1-PCA and we can see
there is a big gap between them. The same conclusion can
be drawn for the ”individual” subspace and in particular we



WDR IA L1-PCA, Aberdeen database
PC’s L = Lmax−2 L = Lmax [5]
8 0.0668 0.0953
16 0.0597 0.0717
24 0.0520 0.0617
32 0.0468 0.0527
40 0.0462 0.0462
48 0.0430 0.0440

Table 1. Error rate for the WDR IA L1-PCA subspace and
the IA L1-PCA [5] using the Aberdeen database

can see that the WDR ”adaptive” method achieves a lower
recognition error rate than the previous ”adaptive” method.
Tab.4.1.2 shows the average error of WDR IA L1-PCA

and IA L1-PCA for the Aberdeen database; WDR IA L1-
PCA still outperforms IA L1-PCA.

4.2. LDA in wavelet domain

In this section, for comparison sake we analyze the perfor-
mance of the WDR LDA algorithm and compare it with the
basic LDA [16]. Specifically, we want to show the results
obtained with three different database: Extended Yale Face
Database, ORL Database and Aberdeen Database. In each
experiment we used Daubechies filter, with lengthLmax = 4.
For all the databases, we did the experiments discarding one
and two levels, L = Lmax −1, L = Lmax −2, so repre-
senting the images with 32x32 and 16x16 DWT coefficients,
respectively.

4.2.1. Extended Yale Face Database

For the Extended Yale Face database2 we have C = 8 number
of classes, for each class we have 25 total images and we
choose N = 8 random images from each dataset for training
and the remaining 17 images for testing. The dimension of
each images is 64x64 pixels, so D = 4096, and we carried
out 50 independent experiments. Regarding the number of
principal components we compute both for the WDR LDA
and LDA up to 56 PC’s. We add the random occluding
patches in the following way: we set POI as p1 = p2 = 10%,
p3 = p4 = 30% p5 = p6 = 50%, and p7 = p8 = 70%; the
corruption affects both the training and testing set of each
class. In addition we choose the occluding patch size in this
range = [15×15, 20×20, 25×25, 30×30] pixels.
The results of the experiments on the database are shown

in Table 2. The WDR LDA maintains the same performance
as LDA when higher layers DWT coefficients are discarded,
but a performance improvement is not observed, and WDR
LDA maintains the same trends observed on the original data.

2The cropped images are used.

WDR LDA, Extended Yale Face database
PC’s L = Lmax−2 L = Lmax−1 L=Lmax[16]
8 0.2956 0.3160 0.3196
16 0.1268 0.1275 0.1296
24 0.0656 01750 0.0700
32 0.0385 0.0712 0.0457
40 0.0234 0.0387 0.0301
48 0.0131 0.0238 0.0178
56 0.0034 0.0135 0.0056

Table 2. Error rate of WDR LDA and LDA [16] for different
representation levels using the Extended Yale Face database

4.2.2. ORL database

For the ORL database we have C = 8 number of classes,
for each class we have 10 total images and we choose N
= 7 random images from each dataset for training and the
remaining 3 images for testing. The dimension of each im-
ages is 64x64 pixels, so D = 4096, and we carried out 50
independent experiments. Regarding the number of princi-
pal components we compute both for the WDR LDA and
LDA up to 56 PC’s. We set POI as p1 = p2 = 30%,
p3 = p4 = 40%, p5 = p6 = 60%, p7 = p8 = 80%; occlu-
sions affects both the training and testing set of each class.
In addition we choose the occluding patch size in this range
= [25×25, 30×30, 35×35, 40×40] pixels.
In Table 3, we recognize that the wavelet domain reduc-

tion does not affect the LDA performance, and may even be
beneficial, since it provides a compact representation.

4.2.3. Aberdeen Database

For the Aberdeen database we have C = 8 number of classes,
for each class we have 18 total images and we choose N
= 8 random images from each dataset for training and the
remaining 10 images for testing. The dimension of each
images is 64x64 pixels, so D = 4096, and we carried out 50
independent experiments. Regarding the number of principal
components we compute both for the LDA and LDA with
wavelet up to 56 PC’s. We set p1 = p2 = 10%, p3 =
p4 = 30%, p5 = p6 = 50%, p7 = p8 = 70%, both on the
training and testing set of each class. In addition we choose
the occluding patch size in this range = [15×15, 20×20,
25×25, 30×30] pixels.
Table 4 confirms the already observed trends, in that the

WDR LDA maintains the same performance as LDA when
higher layers DWT coefficients are discarded.

5. CONCLUSION AND FURTHER WORK

In this work, we tackled the problem of cloud-assisted IA
L1-PCA face recognition using wavelet-domain compressed



WDR LDA, ORL database
PC’s L = Lmax−2 L = Lmax−1 L = Lmax [16]
8 0.3917 0.3783 0.4275
16 0.2075 0.1833 0.2383
24 0.1133 0.0975 0.1383
32 0.0675 0.0558 0.0775
40 0.0442 0.0267 0.0492
48 0.0275 0.0192 0.0342
56 0.0117 0.0075 0.0175

Table 3. Error rate of WDR LDA and LDA [16] for different
representation levels using the ORL database

WDR LDA, Aberdeen database
PC’s L = Lmax−2 L = Lmax−1 L = Lmax [16]
8 0.4303 0.4325 0.4397
16 0.2170 0.2223 0.2507
24 0.1068 0.1098 0.1407
32 0.0585 0.0560 0.0850
40 0.0325 0.0315 0.0488
48 0.0150 0.0190 0.0275
56 0.0092 0.0098 0.0275

Table 4. Error rate of WDR LDA and LDA [16] for different
representation levels using the Aberdeen database

images. Specifically, we analyzed the impact of wavelet do-
main image compression on the Individual Adaptive (IA)
L1-PCA subspace computation and assess the performance
of a classifier operating on data characterized by increas-
ing compactness and accordingly decreasing accuracy. We
established that IA L1-PCA classification is resilient to data
reduction performed in the wavelet domain. This result, con-
firmed also for others state-of-the-art competitors, paves the
way for designing a classification architecture in which smart
wireless devices upload simplifying data and offload the clas-
sification stage to a server in the cloud. Further work will
focus on the impact of different pre-processing techniques as
well as of different encoding techniques, e.g. compressive
sampling, at the mobile device on the performance of the
cloud-based classification stage.
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