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ABSTRACT

We consider the problem of foreground and background extraction from compressed-sensed (CS) surveillance
video. We propose, for the first time in the literature, a principal component analysis (PCA) approach that
computes the low-rank subspace of the background scene directly in the CS domain. Rather than computing the
conventional L2-norm-based principal components, which are simply the dominant left singular vectors of the
CS measurement matrix, we compute the principal components under an L1-norm maximization criterion. The
background scene is then obtained by projecting the CS measurement vector onto the L1 principal components
followed by total-variation (TV) minimization image recovery. The proposed L1-norm procedure directly carries
out low-rank background representation without reconstructing the video sequence and, at the same time, exhibits
significant robustness against outliers in CS measurements compared to L2-norm PCA.

Keywords: Compressed sensing, convex optimization, feature extraction, L1 principle component analysis,
singular value decomposition, surveillance video, total-variation minimization.

1. INTRODUCTION

In video surveillance, video signals are captured by cameras and transmitted to a processing center where video
streams are monitored and analyzed. With the advent of wireless multimedia sensor networks (WMSNs) in the
last decade,1 video surveillance through large-scale WMSNs has become a primary objective in research com-
munities and industry. As a complement to existing wired video surveillance systems, wireless video surveillance
enjoys advantages such as scalability and easy deployment. Wireless cameras in use can be miniature low-cost
devices that capture, compress, and transmit video signals with low power consumption.

The recently introduced paradigm of compressive sensing (CS) acts as an enabler to WMSN technology. CS
theory is an emerging bulk of work that deals with sparse signals of interest2-.4 Rather than collecting an entire
Nyquist ensemble of signal samples, CS performs signal acquisition by a small number of (random4 or determin-
istic5) linear measurements. Successful signal reconstruction relies on effective sparse signal representations and
appropriate recovery algorithms such as convex optimization,6 linear regression,7,8 or greedy procedures.9 Wire-
less video surveillance via compressed sensing can capture and compress video signals simultaneously through
simple linear measurements highly reducing, therefore, data acquisition time and power consumption.

In the reconstruction of CS surveillance video, of particular interest is the ability to detect anomalies or moving
objects that stand out from the background. Since the video sequence can be considered as the sum of a low-rank
component corresponding to the stationary background scene and a sparse component that represents moving
objects in the foreground, the problem of foreground and background separation from CS measurements can be
solved by minimizing the nuclear norm of the low-rank component and the L1 norm of the sparse component.10

Although this method utilizes the low-rank property to enhance signal sparsity, it offers good reconstruction
quality only when a large number of frames is available introducing, therefore, large latency to the decoding
monitoring system.

In this paper, we consider the background extraction problem in compressed-sensed surveillance video from
a principal component analysis (PCA) viewpoint. PCA is arguably a most widely used statistical tool for
data analysis and dimensionality reduction today. Given that the observed data matrix is the sum of a low-rank
component and a perturbation component, extraction of the low-rank component can be solved by (conventional)
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L2-norm based principal component analysis (L2-PCA). Under the statistical assumption that perturbation data
are independent, identically distributed (i.i.d.) Gaussian, the optimal L2-PCA solution, known simply as the
dominant-singular-value left singular vectors of the observed data matrix, corresponds to maximum-likelihood
estimation (MLE). On the negative side, from a practical data driven point of view, L2-PCA becomes quite
sensitive to potential outlier values contained in the perturbation component that are numerically distant from
the nominal data.

In recent years, there has been a growing interest in robust PCA methods to deal with the problem of outliers
in principal-component design11-.18 In several studies11-,14 subspace decomposition is performed under an L1-
error minimization criterion and the problem is solved via convex optimization. In addition, a low-rank and
sparse decomposition problem is solved via minimizing the nuclear norm of the low-rank component and the
L1-norm of the sparse component.15 The robustness of these methods comes at high computational cost due
to linear or quadratic programming. Recently there has been a growing documented effort to calculate robust
subspace components by L1 projection maximization16-.18 The resulting principal components are the so-called
L1 principal components. For instance, a suboptimal iterative algorithm was presented for the computation
of one L1 principal component16 and an iterative algorithm was presented for the joint computation of d ≥ 1
L1 principal components.17 In particular, algorithms for exact calculation of L1 principal components are
developed18 for the first time in the literature.

While the algorithms for optimal L1-PCA18 find successful applications in the original signal space, in this
work we propose for the first time a direct CS-measurement-domain L1-PCA algorithm and apply the procedure
to compressed-sensed surveillance video processing. For a surveillance video sequence, the low-rank property is
preserved in the CS domain if each frame of the video is captured by the same compressed sensing matrix. Hence,
L1-PCA can be performed directly on the collected CS measurement vectors. Since the CS measurement vectors
lie in a reduced dimensional space compared to the original pixel-domain data, the computational complexity for
CS-L1-PCA is dramatically lower. In the experimental studies, we not only demonstrate that the CS-L1-PCA
followed by regular CS image recovery can successfully extract the background scene for a surveillance video,
but also illustrate the advantages of CS-L1-PCA over CS-L2-PCA when CS measurements are corrupted by
outliers/faulty data.

The remainder of this paper is organized as follows. In Section 2, we present our motivation and establish
the building blocks for our proposed procedure, that is exact computation of L1-PCs and compressed-sensed
image recovery based on total-variation (TV) minimization. In Section 3, the proposed CS L1-PCA algorithm
is developed and the overall foreground and background separation scheme is described in detail. Experimental
results and performance analysis are presented in Section 4. Finally, a few conclusions are drawn in Section 5.

2. BUILDING BLOCKS OF THE PROPOSED ALGORITHM

2.1 Exact Computation of the L1 Principal Components

Consider an observation data matrix X ∈ R
D×N that consists of a low-rank component L ∈ R

D×N and a
perturbation matrix E ∈ R

D×N , i.e.
X = L + E (1)

L2-PCA refers to the problem of seeking the best low-rank-d (d ≤ min{D, N}) representation of L by solving

PL2

1 : (RL2
,SL2

) = arg min
R∈R

D×d,RT
R=Id

S∈R
N×d

‖X− RST ‖2, (2)

which is equivalent to the L2 projection (energy) maximization problem

PL2

2 : RL2
= arg max

R∈R
D×d

R
T
R=Id

‖XTR‖2. (3)

The optimal RL2
solution (same in both PL2

1 and PL2

2 ) is known simply as the d dominant-singular-value left
singular vectors of the data matrix X.
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When the perturbation matrix E may contain extreme outlier values (faulty measurements), L1-PCA in the
following form pursues a more accurate/robust subspace representation for L than L2-PCA,

PL1 : RL1
= arg max

R∈R
D×d

R
T
R=Id

‖XTR‖1. (4)

The d columns of RL1
in (4) are the so-called d L1 principal components that describe the rank-d subspace

in which L lies. Analysis shows that exact calculation of the L1 principal components in Problem PL1 can be
recast as a combinatorial problem.18 In short, when the rank of the nominal signal is d = 1, Problem PL1 can
be reduced to

PL1 : rL1
= arg max

r∈R
D

‖r‖2=1

‖XT r‖1, (5)

and we can rewrite PL1 as

max
r∈R

D

‖r‖2=1

‖XT r‖1 = max
r∈R

D

‖r‖2=1

max
b∈{±1}N

bT XT r (6)

= max
b∈{±1}N

max
r∈R

D

‖r‖2=1

rT Xb (7)

= max
b∈{±1}N

‖Xb‖2. (8)

The optimal solution for (8) can be obtained by exhaustive search in the space of the binary antipodal vector b.
Since ‖Xb‖2 = (bT XTXb)1/2 = (−bTXTX(−b))1/2, if b∗ is an optimal solution, then −b∗ is also an optimal
solution. Hence, we can always set b(1) = 1 and the complexity for exhaustive search on the other N − 1
coordinates of b is 2N−1. Computation of ‖Xb‖2 needs D ×N multiplications, therefore the overall complexity
for solving PL1 is 2N−1 × D × N .

When the rank of the nominal signal is d > 1, the problem PL1 can be solved by

max
R∈R

D×d

R
T
R=Id

‖XTR‖1 (9)

= max
R∈R

D×d

R
T
R=Id

max
B∈{±1}N×d

tr(RTXB) (10)

= max
B∈{±1}N×d

‖XB‖∗ (11)

where ‖ · ‖∗ stands for the nuclear norm. By Proposition 4,18 to find exactly the optimal L1-norm projection
operator RL1

in (4) we can perform the following steps:
1) Solve (11) to obtain Bopt.
2) Perform singular value decomposition (SVD) on XBopt = UΣVT .
3) Return RL1

= U:,1:dV
T .

The complexity of the above algorithm is dominated by Step 1, which includes the exhaustive search on the
binary matrix BN×d with complexity O(2N×d), and the SVD per iteration of complexity O(min{D2d, Dd2}).
Therefore, the overall complexity for finding d L1 principal components via exhaustive search is
O(2N×d min{D2d, Dd2}). For fixed data dimension D, a polynomial-time algorithm is developed18 to solve opti-
mally (11) with complexity O(N rank(X)d−d+1), rank(X) ≤ D. Moreover, a fast greedy approximation algorithm
was proposed to solve (11) with complexity O(N3).19

2.2 Compressed-sensed Video Recovery via Total-Variation (TV) Minimization

In this section we briefly review video frame acquisition by compressive sampling and recovery using sparse
gradient constraints (TV minimization). If we consider the tth frame Xt ∈ R

m×n of the video sequence and
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xt ∈ R
D, D = mn, represents the vectorization of Xt via column concatenation, then CS measurements of Xt

are collected in the form of
yt = Φxt (12)

with a linear measurement matrix ΦP×D, P � D. Under the assumption that images are mostly piece-wise
smooth, it is natural to consider utilizing the sparsity of the spatial gradient of Xt for CS frame reconstruction20-
.26 If xi,j denotes the pixel in the ith row and jth column of Xt, the horizontal and vertical gradients at xi,j are
defined, respectively, as

Dh;ij[Xt] =

{
xi,j+1 − xi,j , j < n,

0, j = n,

and

Dv;ij [Xt] =

{
xi+1,j − xi,j , i < m,

0, i = m.

The discrete spatial gradient of Xt at pixel xi,j can be interpreted as the 2D vector

Dij [Xt] =

(
Dh;ij[Xt]
Dv;ij [Xt]

)
(13)

and the anisotropic 2D-TV of Xt is simply the sum of the magnitudes of this discrete gradient at every pixel,

TV2D(xt) ,
∑

ij

(
|Dh;ij[Xt]| + |Dv;ij [Xt]|

)
(14)

=
∑

ij

||Dij [Xt]||`1 .

To reconstruct Xt, we can solve the convex program

x̂t = arg min
Xt

TV2D(xt) subject to yt = Φxt. (15)

However, in practical situations the measurement vector yt may be corrupted by noise. Then, CS acquisition of
xt can be formulated as

yt = Φxt + nt (16)

where nt is the noise vector. To recover Xt, we can use 2D-TV minimization as in (15) and formulate the
following unconstrained optimization problem

x̂t = arg min
xt

µTV2D(xt) +
1

2
‖yt − Φxt‖

2
`2 , (17)

where µ is a non-negative weight controlling the sparsity level.

3. CS-DOMAIN L1-PCA FOR COMPRESSED-SENSED SURVEILLANCE VIDEO

3.1 CS Surveillance Video Acquisition

In this work, we consider a practical CS surveillance video acquisition system that performs pure, direct com-
pressed sensing on each video frame. In the simple compressive video encoding block diagram shown in Fig. 1,
each frame Xt of size m × n is viewed as a vectorized column xt ∈ R

D, D = mn, where t is the frame index.
Compressive sampling is performed by projecting xt onto a P × D (P < D) measurement matrix Φ,

yt = Φxt, (18)

where Φ is generated by randomly permuting the columns of an order-k, k ≥ D and multiple-of-four, Walsh-
Hadamard (WH) matrix followed by arbitrary selection of P rows from the k available WH rows (if k > D,
only D arbitrary columns are utilized). This class of WH measurement matrices has the advantage of easy
implementation (antipodal ±1 entries), fast transformation, and satisfactory reconstruction performance as we
will see later on. A reacher class of matrices can also be found,27.28 For practical implementation, Φ is generated
once and fixed for all frames in the video sequence. The resulting CS measurement vectors yt, t = 1, 2, ..., are
then transmitted to the decoder.
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Input Video
Frames

XE mxnX,
Vectorization

V(.)
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D = mx n

Measurement y EP
Matrix (j)

Figure 1. A compressed-sensing (CS) video encoder.

3.2 L1-PCA for Background Extraction

We can collect a sequence of N CS measurement vectors Y , [y1 y2 . . .yN ] of the form

Y = ΦX + O (19)

= Φ(L + E) + O (20)

= YL + ΦE + O (21)

where X = [x1 x2 . . .xN ] is a matrix consisting of the N corresponding video frames that can be viewed as a
sum of the low-rank background L and the sparse moving objects in the foreground E. Assuming L is a rank-d
matrix, the CS-domain observed data matrix YL = ΦL is also of rank-d and represents the compressed-sensed
background scene. To deal with the practical issue of possible faulty data, we assume that the observed CS
measurements may be corrupted by outliers O due to acquisition failures. By applying L1-PCA to Y, we can
extract the background scene information, i.e.

RL1
= arg max

R∈R
P×d

R
T
R=Id

‖YTR‖1. (22)

The complexity of solving (22) is O(2N−1×P ×N) by the exhaustive search algorithm and O(NP×d−d+1) by the
polynomial-time algorithm.18 Compared to pixel-domain L1-PCA computation described in (9), the complexity
is significantly reduced since the vector length is reduced from D to P due to compressed sensing. By projecting
the observed CS measurements Y onto RL1

, we can obtain the compressed-sensed low-rank component

ŶL1

L
= RL1

RT
L1

Y. (23)

Afterwards, the background scene can be reconstructed by performing CS recovery on the columns of ŶL1

L
, i.e.

ŷL1

L,t, t = 1, 2, ..., N . Here, we propose and use TV minimization introduced in Section 2 of the following form,

̂̀
t = arg min

`t

µTV2D(`t) +
1

2
‖ŷL1

L,t − Φ`t‖
2
2. (24)

For comparison purposes, in parallel we introduce L2-norm based CS-domain PCA calculation (SVD) by

RL2
= arg max

R∈R
P×d

R
T
R=Id

‖YTR‖2. (25)

Similar to (23), the background scene can be obtained by projecting Y onto the L2 principal components,

ŶL2

L
= RL2

RT
L2

Y, (26)

followed by TV minimization as in (24). Since L2-PCA is sensitive to outlier values, the performance of CS-L2-
PCA is anticipated to be inferior to CS-L1-PCA in the presence of faulty/corrupted data.

3.3 Moving Objects Extraction

To extract the sparse moving objects in the foreground, we first perform frame-by-frame CS reconstruction in
the form of

x̂t = arg min
x

µTV2D(x) +
1

2
‖yt − Φx‖2

2. (27)
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(
a
)

(
b
)

With the recovered video frames X̂ = [x̂1 x̂2 . . . x̂N ] ∈ R
D×N the sparse foreground can be recovered as

êt = x̂t − ̂̀
t (28)

for t = 1, 2, ..., N .

4. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS

In this section, we demonstrate the proposed algorithmic developments on two test surveillance video sequences,
PETS2001 and Airport. For each video sequence, 10 frames are selected to form a video volume. Each frame
is compressed-sensed independently using the same randomly permutated partial Walsh-Hadamard matrix. The
number of CS measurements per frame is 37.5% of the total number of pixels in the video frame. Fig. 2
shows a representative frame from each video sequence. Fig. 3 displays background and foreground extraction

Figure 2. Representative frames of (a) PETS2001 and (b) Airport sequences.

results for the representative PETS2001 frame shown in Fig. 2(a) when the CS measurements do not contain
outliers. Rows (i) and (ii) are the results of CS-L1-PCA∗ background and foreground, respectively, extraction
with d = 1, 2, and 3 principal components (columns (a), (b), and (c), correspondingly). Rows (iii) and (iv)
repeat the study for CS-L2-PCA. It is observed that in the absence of outliers, both CS-L1-PCA and CS-L2-
PCA correctly extract the background and the moving objects with one principal component (d = 1). When d

increases (rank mismatch), CS-L1-PCA maintains superior performance, while CS-L2-PCA rapidly deteriorates.
Fig. 4 repeats the study of Fig. 3 for the same data set with corrupted CS measurements. In the experiment,

75% of the CS measurements of three randomly selected frames are corrupted by outliers. The presence of
outliers in three frames modifies/increases the effective SVD rank of the background from d = 1 to 4. Naturally,
when we use d = 1, both L1- and L2-PCA cannot recover the background/foreground scenes. When d ≥ 2,
L1-PCA shows remarkable resistance to outliers and recovers the background and the moving objects well with
L1 rank choice d = 2 (or above, d = 3, 4, 5). On the other hand, L2-PCA needs specifically d = 4 principal
components (number of corrupted frames plus one) to recover the low-rank outlier corrupted background scene
and its performance decreases quickly when d > 4.

For increased credibility, a similar experiment is performed on the Airport sequence (Figs. 5 and 6). In
Fig. 6, 50% CS measurements of three randomly selected frames are corrupted by outliers. Similar conclusion
to the studies of Figs. 3 and 4 can be drawn: CS-L1-PCA offers superior robustness in rank selection and
background/moving objects extraction in clean and outlier corrupted video sequences.

Finally, to place our proposed CS-domain PCA work (L2 or L1) in a broader context, we contrast our findings
against traditional convex optimization algorithm for compressed-sensed surveillance video process.10 In Fig. 7,
we perform compressed-sensed low-rank and sparse decomposition10 on non-corrupted CS measurements of the
same set of video frames studied in Fig. 5. The results show that the background cannot be well reconstructed
even when all CS measurements are received correctly. The reason is that convex-optimization-based compressed-
sensed signal reconstruction relies on the sparse representation, but using the nuclear norm as the regularization

∗For L1-PCA calculation, the fast algorithm19 is adopted.
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0

p)
(b)

<
c)

(d)
(e)

Figure 3. PETS2001 sequence (clean CS measurements): CS-L1-PCA reconstructed background and moving objects (row
(i) and (ii), respectively) and CS-L2-PCA reconstructed background and moving objects (row (iii) and (iv), respectively)
with d = 1, d = 2, or d = 3 principal components (columns (a), (b), and (c), respectively).

Figure 4. PETS2001 sequence (75% outliers in CS measurements of 3 randomly selected frames): CS-L1-PCA recon-
structed background and moving objects (row (i) and (ii), respectively) and CS-L2-PCA reconstructed background and
moving objects (row (iii) and (iv), respectively) with d = 1, d = 2, d = 3, d = 4, or d = 5 principal components (columns
(a), (b), (c), (d), and (e), respectively).
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(i)

(ii)

(iii)

(iv)

(a) (b) (c)

MEE

(a) (b) (c) (d) (e)

Figure 5. Airport sequence (clean CS measurements): CS-L1-PCA reconstructed background and moving objects (row
(i) and (ii), respectively) and CS-L2-PCA reconstructed background and moving objects (row (iii) and (iv), respectively)
with d = 1, d = 2, or d = 3 principal components (columns (a), (b), and (c), respectively).

Figure 6. Airport sequence (50% outliers in CS measurements of 3 randomly selected frames): CS-L1-PCA reconstructed
background and moving objects (row (i) and (ii), respectively) and CS-L2-PCA reconstructed background and moving
objects (row (iii) and (iv), respectively) with d = 1, d = 2, d = 3, d = 4, or d = 5 principal components (columns (a), (b),
(c), (d), and (e), respectively).
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Figure 7. Airport sequence frame reconstructed via CS low-rank and sparse decomposition10 (no outliers in CS measure-
ments): (a) Original frame; (b) reconstructed background; (c) reconstructed moving objects.

penalty for the low-rank component is not sparse enough when only a small number of frames are considered (10
frames in our experiment). In,10 100 frames are considered with a different compressed sensing matrix for each
frame to guarantee the restricted isometry property (RIP)2 required for successful sparse signal recovery from
the CS measurements.

5. CONCLUSIONS

We proposed a compressed-sensing-domain L1-norm maximization principal component analysis scheme for
compressed-sensed surveillance video processing. The algorithm computes a low-rank subspace via L1-PCA
for the background scene directly in the CS domain and enjoys significantly lower computational complexity
than pixel-domain L1-PCA. Background reconstruction is then performed by projecting the CS measurement
vectors onto the L1 principal components followed by regular CS image recovery. For foreground extraction, each
obtained background image is subtracted from its corresponding CS recovered frame. Experiments demonstrate
that the CS-L1-PCA algorithm performs better than L2-norm based CS domain PCA when the CS measure-
ments are corrupted by outliers. Even in clean CS data operation, CS-L1-PCA offers exceptional performance
and robustness in background subspace-rank selection compared to CS-L2-PCA.
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