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Abstract—Deep learning methods have been actively applied in
moving object detection and achieved great performance. How-
ever, many existing models render superior detection accuracy
at the cost of high computational complexity and slow inference
speed, which hindered the application on mobile and embedded
devices with limited computing resources. In this paper, we
propose a two-branch 3D separable convolutional neural network
named “F3DsCNN” for moving object detection. The network
extracts both high-level global features and low-level detailed
features. It achieves a fast inference speed of 120 frames per
second, suitable for tasks that need to be carried out in a
timely manner on a computationally limited platform with high
accuracy.

Index Terms—computer vision, convolutional neural network,
depthwise convolution, inverted residual, linear bottleneck, mov-
ing object detection, pointwise convolution, 3D convolution, 3D
separable convolution, two-branch network, unseen videos, video
analytics, video surveillance.

I. INTRODUCTION

Moving object detection (MOD) is an essential step of a

video processing pipeline which extracts dynamic foreground

content from the video frames, while discarding the non-

moving background. It plays an important role in many

real-world applications [1]–[7]. However, processing a large

amount of video data at a fast speed on a resource-limited

platform is quite challenging and crucial. In this paper, we

propose a fast MOD algorithm called “F3DsCNN” based on

a two-branch network architecture and the 3D separable con-

volution. It is a real-time algorithm tailored for computation-

resource-limited and delay-sensitive applications.

The rest of the paper is organized as follows. In Section II,

we introduce existing algorithms for moving object detection.

In Section III, we elaborate on our proposed network in detail.

Section IV describes our experimental results compared to the

state-of-the-art models. Section V concludes the paper.

II. RELATED WORKS

The methods for MOD problems can be broadly categorized

into traditional methods and deep learning methods.

Traditional methods [8]–[14] basically consist of two com-

ponents: (1) background modeling which initializes the back-

ground scene and updates it over time, and (2) classification

This work was supported in part by Kwai, Inc. under the Kwai, Inc.
grant.

which classifies each pixel to be foreground or background.

There are many background modeling schemes adopted in

traditional methods such as temporal adaptive filter [8] and

temporal median filter [9], etc. However, it is quite difficult

for traditional methods to perform well in complex scenarios.

Deep learning-based methods have been recently proposed

for MOD problems. The first convolutional neural netwrok

(CNN)-based approaches ConvNet-GT [15] and DeepBS [16]

estimate background in traditional ways with temporal filters,

and then utilize CNN for classification. Other 2D convolution-

based models [17]–[19] use end-to-end neural networks such

as FgSegNet M [18] and FgSegNet v2 [19], which take each

video frame at three different resolution scales in parallel as

the input of the encoding network. Besides 2D convolution,

3D convolution is applied to MOD problems to utilize spatial-

temporal information in visual data. In [20], 3D CNN and a

fully connected layer are adopted in a patch-wise method. 3D-

CNN-BGS [21] performs 3D convolution in a multi-scale man-

ner to enhance segmentation accuracy. Recently, generative

adversarial networks (GAN) are adopted in MOD problems.

BScGAN [22] is based on conditional generative adversarial

network (cGAN). BSGAN [23] and BSPVGAN [24] are based

on Bayesian GANs.

However, the performance of all the aforementioned deep

learning-based methods comes at a slow inference speed

due to complex network structures and intense convolution

operations. In this paper, we devise a fast two-branch 3D

separable CNN that extracts both high-level global features

and low-level detailed features for moving object detection

in computation-resource-limited and delay-sensitive scenarios

with high accuracy.

III. PROPOSED F3DSCNN NETWORK

The proposed deep moving object detection network shown

in Fig. 1 is based on a two-branch structure that captures global

context and detailed information. While existing two-branch

models [1], [25]–[27] adopt 2D convolutions, we adopt 3D

convolution in the proposed two-branch network to explore

spatial-temporal information. Further, to reduce complexity

and to increase the inference speed, we replace the standard

3D convolution by the 3D separable convolution.
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Fig. 1. The architecture of the proposed network F3DsCNN.

TABLE I
THE CONFIGURATION OF PROPOSED NETWORK F3DSCNN.

Input/Output data format (CLHW): C: Channel, L: Temporal length, H:
Image height, W: Image width.

A. Design of Proposed Network

1) Two-branch Network: In order to increase detection

accuracy, we design a two-branch network for feature ex-

traction. Traditional two-branch methods [25]–[27] extract

global features from low-resolution images with deeper neural

network, and extract spatial details from full-resolution images

with shallow neural network structures. To reduce computa-

tional complexity, the two branches can share the first few

layers [1]. Our proposed method is shown in Fig.1. Branch

1 adopts deep inverted residual bottleneck layers to extract

global features, and branch 2 adopts a shallower network to

extract lower-level features. The two branches share layers

from point A to B. The advantage of such layer sharing

is that it learns a low-resolution representation from a full-

resolution image, which is then used as the input of global

feature extraction in branch 1, and simultaneously this low-

resolution representation encodes the full-resolution image for

detailed spatial feature extraction in branch 2. Finally, these

two types of features are concatenated and fed into the decoder.

2) 3D Separable Convolution: While existing two-branch

models [1], [25]–[27] adopt 2D convolution, our proposed

F3DsCNN adopts 3D convolution in both branch 1 and branch

2 to explore temporal information and to improve detection

accuracy. In a 3D convolution layer, the input is 4D and is

of size C × L × H × W , where C is the number of input

channels, L is the temporal length, H and W are the height

and width of feature maps. Filters of size C × K × K × K
(channel × time × height × width) move in three directions

aligning with the temporal length, height, and width axes of

the 4D input to output a 4D tensor.

Further, to reduce model size and computational com-

plexity, we propose to separate the aforementioned standard

3D convolution into a 3D depthwise convolution and a 1D

pointwise convolution. The 3D depthwise convolution adopts

independent filters of size K × K × K (time × height ×
width) to perform a 3D convolution on each of the C input

channels. Then, the pointwise convolution adopts filters of size

C×1×1×1 (channel × time × height × width), performs a

linear projection along the channel axis, and generates a new

representation. Such a factorization can reduce computational

complexity by roughly 1
K3 times where K is the filter size.

3) Inverted Residual BottleNeck with 3D Separable Convo-
lution: In branch 1, we adopt the inverted residual bottleneck

module that was originally proposed in MobileNet-V2 [2]. In

an inverted residual bottleneck module [2], the input features

with Cl channels are first expanded to a high-dimensional

space with Ch > Cl channels using a pointwise convolution.

Subsequently, a 2D depthwise convolution with nonlinear

activations is performed on each of these Ch channels. Af-

terwards, another pointwise convolution with linear activatons

projects the features back onto a low-dimensional space with

Cl channels. The reason for such operations is that it is better

to apply nonlinear activations in a high-dimensional space than

in a low-dimensional space to prevent information loss. To uti-

lize spatio-temporal information in video data and to increase

detection accuracy, we propose to replace such 2D separable

convolutions in the inverted residual bottleneck [2] by 3D

separable convolutions. The redesigned 3D inverted residual

bottleneck first expands the 4D input of size Cl×L×H×W
to a high-dimensional space by a pointwise convolution with

Ch filters of size Cl × 1 × 1 × 1 (Cl is the low-dimensional

input channel, Ch is the high-dimensional output channel,

Ch > Cl). Subsequently, a 3D depthwise convolution with

a filter of 3 × 3 × 3 (time × height × width) is performed

on each of the Ch channels, and the output is then projected

back to the low-dimensional space using another pointwise

convolution with Cl filters of size Ch × 1× 1× 1 with linear

activations.
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B. Configuration of Proposed Network

We use the format of “CLHW” to represent data, which

denotes the number of channels C, the temporal length L, the

height of the image H, and the width of the image W.

In Table I, for each training sample, the input to the encoder

network is a set of consecutive video frames in a 4D shape of

3×9×240×320 , where 3 is the RGB color channels, 9 is the

number of video frames, and 240 and 320 are the height and

width of the video frames. In Fig. 1, t0, t1, t2, t3, t4... represent

different time slots. In the first step, standard 3D convolution

is adopted with 32 filters of size 3 × 3 × 3 × 3 to calculate

the convolution on nine input frames. The input video frames

are transformed to 32 feature maps in a shape of 32 × 9 ×
240 × 320 at the output. In the following blocks, the feature

maps are down-sampled by 9 layers of 3D separable CNN

and then separately go through the 24 layers of 8 consecutive

3D inverted residual bottleneck modules in branch 1 for deep

global feature extraction, and through 8 layers of 3D separable

CNN in branch 2 for shallower feature extraction, and then the

outputs of the two branches are concatenated together to be

fed into the decoder. In the decoder, we employ 4 layers of 3D

separable transposed convolution and 1 layer of standard 3D

convolution. A sigmoid activation function is appended at the

end to generate the probability masks for 6 successive frames

in a shape of 1× 6× 240× 320.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To analyze how the proposed model performs, we conducted

two experiments: (A) Training and evaluation on seen videos

of CDnet2014 dataset [28], and (B) Training and evaluation on

unseen videos of DAVIS2016 dataset [29]. In Experiment (A),

frames in training and test sets were non-overlapped, but from

the same video, whereas, in Experiment (B), videos completely

unseen in the training set were used for testing.

To evaluate the performance of our proposed model, the

inference speed is measured in frames per second (fps), and

the detection accuracy is measured by F-measure defined as:

F -measure =
2× precision × recall

precision + recall
(1)

where precision = TP
TP+FP , recall = TP

TP+FN , given the true

positive (TP), false positive (FP), true negative (TN), and false

negative (FN).

We used the RMSprop optimizer with binary cross-entropy

loss function and trained the model for 30 epochs with batch

size 5. The learning rate was initialized at 1× 10−3 and was

reduced by a factor of 10 if the validation loss did not decrease

for five successive epochs. Both experiments were carried out

on an Intel Xeon with an 8-core 3GHz CPU and an Nvidia

Titan RTX 24GB GPU. The number of trainable parameters

for the proposed model is 4.34 millions.

A. Training and Evaluation on Seen Videos (CDnet2014)

The CDnet2014 dataset has 11 video categories which

include a total of 53 video sequences. In Experiment (A), we

excluded the PTZ (pan-tilt-zoom) category since the camera

has excessive motion. The proposed model was trained on the

first 50% frames in each of the 49 videos, and test on the last

50% frames from the same videos.

All the other nine compared deep learning-based methods

such as VGG-PSL-CRF [30], DeepBS [16], BSPVGAN [24],

MsEDNet [31], MSCNN+Cascade [32], MSFgNet [33], as

well as FgSegNet S [18], FgSegNet M [18], and FgSeg-

Net v2 [19] were trained and tested in the same setup as our

proposed model F3DsCNN.

Table II shows the objective performance. Each column lists

the inference speed in fps and detection accuracy in F-measure

values averaged on test frames from a certain video category,

while the last column shows the average F-measure values

across all the 10 video categories. We found that our proposed

model outperforms the other nine deep-learning methods by

8.3% on average in F-measure and achieves the highest infer-

ence speed at 120 fps. Fig. 2 (a)shows the visual subjective

performance of our proposed model in Experiment (A) on

CDnet2014 dataset. We randomly picked a sample test frame

from categories BSL-baseline, LFR-lowFramerate, and NVD-

nightVideos. We observe that the proposed F3DsCNN provides

more details and clearer edges in the detected foreground

objects, such as the car mirrors in “BSL” and the truck in

”LFR”. Moreover, the proposed method detects more accurate

and contiguous objects such as the bus in “NVD”. In contrast,

the detected binary masks of other methods in comparison

have either blurry edges or missing parts.

B. Training and Evaluation on Unseen Videos (DAVIS2016)

To evaluate the generalization ability of the proposed

model, we also conducted Experiment (B) on unseen videos

of DAVIS2016 dataset. In this experiment, 30 videos in

DAVIS2016 dataset were used in training, and 10 com-

pletely unseen videos were used for testing. Table III shows

the comparison between the proposed model and publicly

published deep learning-based methods such as MSK [34],

CTN [35], SIAMMASK [36], and PLM [37] from the bench-

mark DAVIS2016 challenge [38], as well as FgSegNet S [18],

FgSegNet M [18], and FgSegNet v2 [19] which were trained

and tested in the same setup as our proposed model F3DsCNN.

Table III shows the objective performance. We found that

our proposed model offers overwhelmingly faster inference

speed at 120 fps. Although the proposed method only offers

slightly higher F-measure of 0.8006 than that of MSK [34],

its advantage in inference speed at 120 fps is more suitable

for mobile and embedded devices. Compared to the remaining

existing methods, the proposed method F3DsCNN enhanced

the F-measure by 12.6% on average.

In Fig. 2 (b), we randomly select three videos (camel,

horsejump-high, and bmx-trees) for comparison illustration.

Our proposed model accurately and clearly detects the shapes

and details of objects such as the bike and person in ”bmx-

trees”, the camel and the horse in ”camel” and ”horsejump-

high”, while the other models hardly detect correct shapes of

objects or can only detect blurry, noisy or incomplete objects.
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TABLE II
COMPARATIVE F-MEASURE PERFORMANCE FOR SEEN VIDEOS ON CDNET2014 DATASET.

BDW BSL CJT DBG IOM NVD LFR SHD THM TBL Avg
VGG-PSL-CRF [30] 4.9 0.8869 0.9474 0.9276 0.7190 0.7405 0.7398 0.6105 0.8890 0.8352 0.9137 0.8210

DeepBS [16] 10 0.8221 0.9460 0.8844 0.8593 0.5962 0.5777 0.5932 0.9116 0.7389 0.8385 0.7768
BSPVGAN[24] 10 0.9564 0.9717 0.9747 0.9683 0.9230 0.8873 0.8448 0.9732 0.9570 0.9240 0.9380
MsEDNet [31] 13.6 0.8975 0.9248 0.9027 0.8902 0.8051 - - 0.9002 0.8621 - 0.8832

MSCNN+Cascade [32] 50 0.9351 0.9666 0.9612 0.9492 0.8358 0.8837 0.8312 0.9227 0.8764 0.9038 0.9066
FgSegNet_M [18] 69 0.9307 0.9528 0.9403 0.9136 0.8943 0.8830 0.8897 0.9153 0.9160 0.7964 0.9032
FgSegNet_S [18] 82 0.9331 0.9608 0.9407 0.9233 0.9045 0.8871 0.9123 0.9197 0.9152 0.7980 0.9095

MSFgNet [33] 83.8 0.8424 0.9091 0.8167 0.8348 0.7669 0.7973 0.8352 0.9151 0.7822 0.8572 0.8357
FgSegNet_v2 [19] 89 0.9396 0.9680 0.9475 0.9143 0.8985 0.8736 0.9247 0.9152 0.9196 0.8179 0.9119

Proposed F3DsCNN 120 0.9712 0.9784 0.9755 0.9721 0.9737 0.8878 0.9718 0.9432 0.9576 0.9581 0.9589

Method Inference 
Speed (fps) 

F-measure

TABLE III
COMPARATIVE F-MEASURE PERFORMANCE FOR UNSEEN VIDEOS ON DAVIS2016 DATASET.

camel car-
roundabout

car-
shadow cows goat horsejump-

high kite-surf bmx-trees parkour soapbox Avg

MSK [34] 0.5 0.7350 0.9260 0.9480 0.8120 0.8140 0.8510 0.4380 0.7360 0.8740 0.8420 0.7976
CTN [35] 4.5 0.7250 0.7750 0.8670 0.7750 0.7460 0.8660 0.4600 0.4800 0.8820 0.7440 0.7320
PLM [37] 9.5 0.6130 0.7140 0.7310 0.7410 0.6940 0.7860 0.4560 0.6840 0.8120 0.6300 0.6861

SIAMMASK [36] 78 0.7480 0.8720 0.9780 0.7720 0.7210 0.6880 0.3260 0.6590 0.8290 0.5470 0.7140
FgSegNet_M [18] 69 0.6047 0.4892 0.8704 0.5620 0.4009 0.6199 0.6308 0.5895 0.5190 0.5835 0.5870
FgSegNet_S [18] 82 0.6163 0.5194 0.8940 0.5356 0.4063 0.6273 0.6904 0.6948 0.5345 0.5902 0.6109
FgSegNet_v2 [19] 89 0.6201 0.5120 0.8744 0.5309 0.4509 0.5940 0.6820 0.5498 0.5029 0.6194 0.5936

Proposed F3DsCNN 120 0.8144 0.8155 0.8456 0.8162 0.8213 0.8721 0.7020 0.8860 0.7060 0.7271 0.8006

Method Inference 
Speed (fps) 

F-measure

Input                   Ground Truth           Proposed         FgSegNet_S[18]    FgSegNet_v2[19]     BSPVGAN [24]  MSCNN+Cascade[32]    DeepBS[16]         

BSL
(highway)

LFR
(turnpike_0_5fps)

NVD
(streetCorner

AtNight)

camel

horsejump-
high

bmx-
trees

Input                 Ground Truth           Proposed          FgSegNet_S[18]      FgSegNet_v2[19]   SIAMMASK [36]          MSK [34]              PLM [37]                

(a)

(b)

Fig. 2. Visual comparison results (a) Experiment (A) on seen sample of CDnet2014 dataset, (b) Experiment (B) on unseen samples of DAVIS2016 dataset.

V. CONCLUSION

In this paper, we propose the F3DsCNN model for moving

object detection. Our model is designed specifically for en-

vironments with limited computing resources and for delay-

sensitive tasks. Our model increases detection accuracy by

utilizing the spatial-temporal information in the video data via

3D convolution, and also by feature fusion via the two-branch

structure. Our model improves the efficiency of the model via

3D separable convolution and 3D inverted residual bottleneck

module. Moreover, the two experiments conducted on seen

videos and unseen videos demonstrate that our proposed model

achieves superior detection accuracy among all compared

models with high inference speeds suitable for low-latency

vision applications. In terms of future study, we plan to use

data-augmentation techniques to improve detection accuracy,

and we plan to extend the work to object-aware moving object

detection tasks to discriminate different moving objects.
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