
Sparse Coding of Intra Prediction Residuals for
Screen Content Coding

Michael G. Schimpf
Computer Science and

Engineering
Santa Clara University

Santa Clara, USA
mschimpf@scu.edu

Nam Ling
Computer Science and

Engineering
Santa Clara University

Santa Clara, USA
nling@scu.edu

Yunhui Shi
Key Lab of Multimedia and

Intelligent Software Technology
Beijing University of Technology

Beijing, China
syhzm@bjut.edu.cn

Ying Liu
Computer Science and

Engineering
Santa Clara University

Santa Clara, USA
yliu15@scu.edu

Abstract—High Efficiency Video Coding - Screen Content
Coding (HEVC-SCC) is an extension to HEVC which adds
sophisticated compression methods for computer generated
content. A video frame is usually split into blocks that are
predicted and subtracted from the original, which leaves a
residual. These blocks are transformed by integer discrete sine
transform (IntDST) or integer discrete cosine transform
(IntDCT), quantized, and entropy coded into a bitstream. In
contrast to camera captured content, screen content contains a
lot of similar and repeated blocks. The HEVC-SCC tools utilize
these similarities in various ways. After these tools are executed,
the remaining signals are handled by IntDST/IntDCT which is
designed to code camera-captured content. Fortunately, in sparse
coding, the dictionary learning process which uses these residuals
adapts much better and the outcome is significantly sparser than
for camera captured content. This paper proposes a sparse
coding scheme which takes advantage of the similar and repeated
intra prediction residuals and targets low to mid
frequency/energy blocks with a low sparsity setup. We also
applied an approach which splits the common test conditions
(CTC) sequences into categories for training and testing
purposes. It is integrated as an alternate transform where the
selection between traditional transform and our proposed
method is based on a rate-distortion optimization (RDO)
decision. It is integrated in HEVC-SCC test model (HM) HM-
16.18+SCM-8.7. Experimental results show that the proposed
method achieves a Bjontegaard rate difference (BD-rate) of up to
4.6% in an extreme computationally demanding setup for the
“all intra” configuration compared with HM-16.18+SCM-8.7.

Keywords— video coding, sparse coding, sparse representation,
orthogonal matching pursuit, screen content coding, HEVC,
residual coding, intra prediction, KSVD

I. INTRODUCTION

A significant part of HEVC video compression is Intra
prediction. Intra signals are split into blocks, each intra block
can chooses among 33 angular, DC and planar modes for a
prediction of the original signal [1]. After an optimal prediction
is found based on RDO, the predicted block is subtracted from
the original block. The resulting residual represents the
prediction error. The residual is then IntDST/IntDCT
transformed, quantized, and entropy coded into a bitstream.
HEVC-SCC, especially HM-16.18+SCM-8.7 [2] is an
extension to HEVC. It shares the same coding architecture as
HEVC along with several new elements, some inherited from
HEVC version 1 and some from HEVC-RExt. These include
the adaptive color transform (ACT), adaptive motion vector
resolution (AMVR), cross-component prediction (CCP),
intra

block copy (IBC), palette mode (PM), residual rotation (RR),
residual differential pulse code modulation (RDPCM), and
transform skip (TS). The rationale behind these tools is
explained in [3]. Its purpose is to improve the compression of
graphics, text, animation, and mixed content. Screen content
has important properties such as no sensor noise, large uniform
flat areas, many repeated patterns, highly saturated and limited
colors, high contrast, discrete tones, sharp edges, and high
frequencies in certain regions [3]. After applying all HEVC-
SCC tools, a significant amount of similar and repeated signals
remains in the residual. A reason for this is the IBC tool which
integrates the inter motion vector concept into the intra
domain. As a result, IBC replaces a lot of similar and repeated
intra predictions but keeps the residual transform process as it
is.

Sparse coding aims to find a sparse representation of the
signal y in the form of a linear combination of basic elements.
These elements are called atoms and they compose a
dictionary. The dictionary can be found by the K-singular-
value decomposition (K-SVD) algorithm [4]. An atom contains
the index to the dictionary entry as also the coefficient which
represents the magnitude to which the dictionary entry is later
linearly added to reconstruct the signal. The proposed method
uses Orthogonal Matching Pursuit (OMP) [5] to solve equation
(1).

y ∈ ℝ y = signal, n = signal dimension

𝐃 ∈ ℝ D = dictionary, K = # of atoms

𝐱 ∈ ℝ x = vector of coefficients

Approximated representation of y:

min
𝐱

‖𝐲 − 𝐃𝐱‖ s. t. ‖𝐱‖ ≤ 𝜀 (1)

‖∙‖ represents the L2 norm and ‖∙‖ the L0 pseudo norm.

Existing sparse coding research covers the topic from
different angles. However, sparse coding of similar and
repeated intra predicted residuals with low to mid
frequency/energy blocks and a low sparsity setup for screen
content video compression has not been discussed. Most
research applies sparse coding to camera captured inter
prediction residuals like [6] which handles anisotropic
correlation (high frequency, sharp edges) signals or [7] which
puts DCT and sparse coding in a sequence for a two-layered
approach (both in HEVC). Work [8] is an example of a video
compression paper that used matching pursuit to code inter and
intra prediction residuals. It was integrated into the H.264

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

on
su

m
er

 E
le

ct
ro

ni
cs

 (I
C

C
E)

 |
97

8-
1-

72
81

-9
76

6-
1/

20
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
C

E5
06

85
.2

02
1.

94
27

72
2

Authorized licensed use limited to: Santa Clara University. Downloaded on December 05,2021 at 18:38:21 UTC from IEEE Xplore. Restrictions apply.

standard and replaced the core transforms through an adaptive
mixed transform scheme. Sparse coding of intra prediction
residuals is discussed most in papers which use it in image
compression like [9].

In this work, we propose a method integrated into HEVC-
SCC to compress intra prediction residuals with an alternate
sparse coding transform and an offline dictionary training
process that is adapted for similar and repeated low to mid
frequency/energy blocks with a low sparsity setup. In general,
HEVC-SCC checks the standard IntDST/IntDCT process and
calculates the RDO cost, then the proposed method is executed.
If the proposed method’s RDO cost is lower than that of the
standard process, the atoms of sparse vector x are encoded into
a bitstream. The proposed sparse coding solution is set up for a
low sparsity configuration which means maximum sparsity is
set to 4.

 The remainder of the paper is organized as follows:
section 2 explains the proposed method, section 3 depicts
implementation details, section 4 presents the experimental
results, and section 5 gives the conclusion and future work.

II. PROPOSED SPARSE CODING FOR SCC

In HEVC-SCC, all HEVC-SCC and HEVC tools, are
executed and RDO calculated, and the best RDO candidate is
selected to be encoded into the bitstream. Our proposed
method is executed and RDO calculated after this process is
done, and only for the IntDST/IntDCT candidates. The
IntDST/IntDCT process predict a given block, and calculated
the residual block, by subtracting the predicted from the
original block, quantize the residual block and entropy code the
remaining into the bitstream, as depicted in the upper branch in
Figure 1. RDO delivers an optimal approximation by
minimizing the R-D cost J(k). The HEVC RDO process is
based on [2][10].

𝐽(𝑘) = 𝐷(𝑘) + 𝜆𝑅(𝑘) (2)

 𝜆 = 0.57 × 2 . (3)

where k is the number of nonzero coefficients, R(k) is the
number of bits after entropy coding, D(k) is the mean-squared
error (MSE) between the original and the reconstructed image
block, λ represents the Lagrange multiplier in HEVC [2][10]
and QP is the quantization parameter.

The proposed sparse coding solution, as depicted in the
Figure 1 lower branch, is applied as an alternative transform. It
specifically targets similar and repeated intra predicted
residuals with a low to mid frequency/energy distribution and
uses a low sparsity setup. The solution probes every residual
block that has a low to medium absolute sum and uses only a
maximum of 4 dictionary atoms. This low maximum sparsity
setup is in many cases sufficient enough to be selected by the
RDO process over the IntDST/IntDCT transform and saves
execution time. Our proposed method uses an unusual in-loop-
quantization-scheme which means that quantization is part of
the RDO process. HEVC’s rate-distortion optimized
quantization (RDOQ) [10] is not used for quantizing sparse-
coefficients because the process is not well adapted to the one-
dimensional sparse coefficients, but the standard HEVC Qstep
calculation is used for quantization and dequantization of
sparse coefficients:

𝑄𝑠𝑡𝑒𝑝(𝑄𝑃) = 2 (4)

where QP represents the quantization parameter which is
set in the common test conditions CTC [11] to 22, 27, 32, and
37. After every sparse iteration, the coefficients are quantized
and dequantized based on (4), entropy encoded, RDO cost
calculated (see formulas (2) and (3)) and finally compared with
the previous iteration. For the first iteration, the cost is high
because the distortion is high, but it decreases with every
iteration and atom until it reaches a minimum. Then, it
increases again because the number of bits rises and makes the
cost higher even as the distortion decreases. When the
minimum is reached, the proposed method stops. If the RDO
cost is less than the IntDST/IntDCT RDO cost, the sparse
atoms are stored into the HEVC data structures and later
encoded into the bitstream.

As a second part of the proposed method, it is important
that the offline K-SVD training process [4] is adapted to these
similar and repeated low to mid frequency/energy blocks. To
achieve this, a higher dictionary size k gives the K-SVD/OMP
algorithm [4][5] more overall atoms to choose from plus K-
SVD parameter optimizations, which is explained in the
implementation details. This decreases the average sparsity.
We adopt a category approach applied to the training process
based on the common test conditions CTC [11] categories.
This better utilizes the uniformity in a specific category
because the number bases in these screen content categories are

Figure 1. Block diagram – In-loop-quantization RDO Intra prediction residual sparse coding scheme (qcoeffs =
IntDST/IntDCT quantized coefficients, qatoms = quantized sparse coefficients and sparse indices)

Authorized licensed use limited to: Santa Clara University. Downloaded on December 05,2021 at 18:38:21 UTC from IEEE Xplore. Restrictions apply.

similar. These categories are animation (A), mixed content
(MC), and text and graphics with motion (TGM). Overall, the
similarity in the residual blocks training data has a significant
impact on the dictionary training process [4]. It better
converges to this training setup and creates dictionaries which
significantly improve and encourage the sparsity in contrast to
camera captured content. It needs less dictionary atoms to
come to the same results, which saves bits and makes sparse
coding in the RDO process more suitable.

III. IMPLEMENTATION DETAILS

 The HM16.18 HEVC CABAC engine is used to entropy
code most of the proposed method side information. Every
intra predicted residual block is extended by a flag which states
whether our method or IntDST/IntDCT transforms are used.
All sparse indices are coded in fixed length (CABAC bypass)
code because of the uniform distribution. The sparse
coefficient coding closely follows the standard “transform
coefficient coding” [12] with minor optimizations and own
context models. Every QP setting has the same maximum
sparsity setting of 4 for every block size, which sets a low
upper bound of iterations per sparse execution. This low upper
bound saves RDO cost and computational time, as well as
emphasizes low to mid frequency/energy blocks since only a
limited amount of iterations are executed (maximum 4
iterations).

The training data, which is basically all intra predicted residual
blocks with an absolute sum > 0, is created by a separated HM-
16.18+SCM-8.7 [2] run. All CTC [11] test sequences are split
20% for training and 80% for testing. These trained files are
grouped and randomly shuffled into the mentioned categories
(based on CTC [11]) which goes into an offline K-SVD
training process [4]. The process itself is optimized for a low
sparsity setup, which emphasizes similar and repeated low to
mid frequency/energy blocks. The KSVD-hyperparameters are
set as follows: dictionary K size is 2,048, the number of atoms
for training is set to only 2, and 800 iterations per dictionary
are executed. Another optimization is to take the training data
from a higher quantization training run than used for the test
execution. As a rule, higher quantization setup leads to greater
similarity and repetition in the residual training data, which
encourages a sparser representation. Overall, there are three
dictionaries per category and block size. These offline learned
static dictionaries are included in the encoder and decoder, so
that only the sparse atoms and not the dictionaries themselves
are encoded in a bitstream.

IV. EXPERIMENTAL RESULTS

 The proposed solution is implemented on the HEVC
reference software HM-16.18+SCM-8.7 [2]. The test setup
follows the common test conditions (CTC) [11] which tests 13
screen content sequences in four different QP settings: 22, 27,
32 and 37. Our setup diverts at one point, it uses 20% of the
frames of each test sequence for training and the remaining
80% for testing and this separation is strict, so that there are no
training data included in the result tables. The proposed
method is used in three configurations: a maximum BD setup,
a medium BD setup, and a low BD setup. The maximum BD
setup, which tries to get as much BD-rate savings as possible
while ignoring the execution time, uses the following

configuration: “all intra,” QP settings 22, 27, 32, and 37, block
sizes 4x4, 8x8, 16x16, and 32x32, and 4:2:0 color scheme. In
general, for the 4:2:0 color scheme, HEVC-SCC uses only four
of seven HEVC-SCC tools: transform skip (TS), residual
differential pulse-code modulation (RDPCM), intra block copy
(IBC), and palette mode (PM) [3]. In contrast to the maximum
BD setup, the medium BD setup focusses more on a lower
execution time and is not using block sizes 4x4 and 32x32 and
is not sparse coding at the QP 22 setting. Finally, the low BD
setup, which is encoding only 8x8 block sizes, skips QP22 and
the chroma part.

A. Similarity comparison

We compared the intra residual data between camera
captured common test sequences [13] (except ClassF) and
screen content common test sequences [11] with the number of
repeated residual blocks and the average cosine similarity. All
residual blocks from all test sequences are sorted and the
cosine similarity for each pair is calculated by formula (5):

 s(𝐚, 𝐛) =
∑

|𝐚||𝐛|
 (𝑛 = vector dimension) (5)

 where a and b are neighbors. Then, the average of all
results is taken. For camera captured content repeated blocks
are 0.2% and the cosine similarity is 0.2, for screen content
repeated blocks are 34.4% and cosine similarity is 0.4. As
expected, for camera captured content each intra residual block
is unique from the others and differs at least slightly. However,
it is remarkable that for screen content the repetition (identical)
of intra residual blocks is very high, which means 1/3 of all
intra residual screen content blocks are duplicates. The cosine
similarity is up by 50% from 0.2 to 0.4 for screen content (0
means orthogonal, 1 means match).

B. Test results for maximum BD-rate savings setup

Table 1 – Test results for the maximum BD-rate savings
setup of the proposed method for block sizes: 4x4, 8x8,
16x16, and 32x32 and QP settings: 22, 27, 32, and 37,
compared to HM-16.18+SCM-8.7.

Category Luma1 Cr1 Cb1 Enc
Time

TGM720&1080 -3.0% -1.6% -1.8% 1,018

MixedContent -9.0% -5.3% -5.0% 1,025

Animation -4.4% -0.5% -1.7% 1,034

Average -4.6% -2.3% -2.6% 1,022

Table 1 shows what the maximum upper bound for the
proposed method is. This is the maximum setup without
consideration for the computational complexity. It is obvious
that this setup is not useable since the increase in execution
time is more than ninefold higher and the decoder execution
time is slightly even higher than the encoder execution time.
Nonetheless, it gives an upper limit to what the proposed
method is capable of, if complexity did not matter, even though
in practice it does. The percentage of proposed method block
selection over the block sizes 4x4, 8x8, 16x16, and 32x32 are
3.0%, 19.6% 27.8%, and 30.2%, which is overall 20.2%. The

1 BD-rate savings (piecewise cubic)

Authorized licensed use limited to: Santa Clara University. Downloaded on December 05,2021 at 18:38:21 UTC from IEEE Xplore. Restrictions apply.

low number for the 4x4 block size reflects that 4x4 only
minimally contributes to the overall outcome. In general,
bigger block sizes lead to bigger BD-rate savings, but at the
same time the execution time exponentially increases.

Table 2 Detailed BD-rate savings of Table 1 broken down
by separate test sequences compared to HM-16.18+SCM-
8.7.

Video Sequence Category Luma1 Cr1 Cb1

FlyingGraphics TGM1080 0.3% 0.9% 0.9%
Desktop TGM1080 -2.4% -1.2% -1.1%
Console TGM1080 0.2% 0.6% 0.5%
ChineseEditing TGM1080 -3.8% -2.1% -2.2%

WebBrowsing TGM720 -6.1% -5.0% -5.3%
Map TGM720 -8.1% -5.8% -6.2%
Programming TGM720 -3.0% 0.3% -0.5%
SlideShow TGM720 -1.3% -0.2% -0.7%

BasketballScreen MixedCo. -15.3% -9.2% -8.5%
MissionControl2 MixedCo. -4.0% -2.1% -1.8%
MissionControl3 MixedCo. -7.8% -4.7% -4.9%

Robot Animation 0.2% 2.9% 1.3%
ChinaSpeed Animation -9.0% -3.9% -4.8%

Average -4.6% -2.3% -2.6%

Table 2 shows the details for every test sequence of Table 1. It
is interesting that through all tests, there will be 3 to 4 outliers
which are close to 0% BD-rate savings depending on the test
configuration, but the overall relation between the percentages
stays close for all setups only the absolute value varies.

Table 3 Number of sparse atoms in different block size.

Atoms 4x4 8x8 16x16 32x32

1 3,116,984 2,873,928 906,312 242,417
2 553,719 1,052,425 686,473 289,251
3 95,908 441,428 286,365 130,763
4 5,307 191,448 562,597 357,931

Table 3 shows the distribution for how many sparse atoms are
used in which block size and for all QP settings 22, 27, 32 and
37 summed up. Interestingly, most sparse coded blocks use
only one to two sparse atoms. The irregularity in the block
size columns 16x16 and 32x32 between atoms 3 to 4 is
unknown and could indicate an error or a statistical
irregularity because it is not strictly decreasing. The average
sparsity for 4x4, 8x8, 16x16, and 32x32 blocks are 1.2, 1.6,
2.2, and 2.6.

C. Test results for medium BD-rate savings setup

Based on RDO performance, we removed block size 4x4
because it does not contribute a lot, block size 32x32 because
the sparse coding complexity is extremely high, and QP22
because the amount of side information increases significantly
with higher QP [7][8], which makes sparse coded blocks less
attractive in the RDO process and lowers the partial BD-rate
savings contribution to around -0.1% to -0.2%.

Table 4 Test results on the medium BD-rate savings setup
for the proposed method, compared to HM-16.18+SCM-
8.7.

Category Luma2 Cr1 Cb1 Enc
Time

Dec
Time

TGM720&
TGM1080

-1.3% -0.9% -1.1% 201% 228%

Mixed
Content

-5.1% -3.5% -3.1% 199% 164%

Animation -3.5% -2.8% -3.1% 217% 286%

Average -2.5% -1.8% -1.8% 203% 219%

Table 4 shows the results of a medium BD-rate savings setup
which takes the time complexity a bit more into consideration.
This setup has a BD-rate savings of 2.5%, but still exceeds the
encoding time by 103% and the decoding time by 119%.

Table 5 Detailed BD-rate savings of Table 4 broken down
by separate test sequences compared to HM-16.18+SCM-
8.7.

Video Sequence Category Luma1 Cr1 Cb1
FlyingGraphics TGM1080 -0.1% 0.0% 0.0%
Desktop TGM1080 -1.1% -0.5% -0.6%
Console TGM1080 0.1% -0.1% -0.1%
ChineseEditing TGM1080 -2.2% -1.3% -1.5%
WebBrowsing TGM720 -1.8% -1.8% -1.8%
Map TGM720 -2.9% -2.3% -2.5%
Programming TGM720 -2.2% -1.0% -1.2%
SlideShow TGM720 -0.3% -0.3% -0.6%
BasketballScreen MixedCo. -6.1% -4.0% -3.4%
MissionControl2 MixedCo. -3.5% -2.9% -2.4%
MissionControl3 MixedCo. -5.6% -3.8% -3.5%
Robot Animation -0.1% 0.0% -0.3%
ChinaSpeed Animation -6.8% -5.6% -5.9%
Average -2.5% -1.8% -1.8%

Table 5 shows the details for every test sequence of Table 4
and the percentages varies as expected.

D. Test results for low BD-rate savings setup

Table 6 Test results on the low BD-rate savings setup for
the proposed method, compared to HM-16.18+SCM-8.7.

Category Luma3 Enc Time Dec Time

TGM720&
TGM1080

-0.3% 123% 117%

Mixed Content -1.2% 124% 109%

Animation -1.6% 128% 120%

Average -0.7% 124% 115%

Table 6 shows the results of the low BD rate setup, which has
a BD-rate savings of 0.7%, and the encoding time is increased
only by 24% and the decoding time by 15%.

2 BD-rate savings (piecewise cubic)
3 BD-rate savings (piecewise cubic)

Authorized licensed use limited to: Santa Clara University. Downloaded on December 05,2021 at 18:38:21 UTC from IEEE Xplore. Restrictions apply.

Table 7 Detailed BD-rate savings of Table 6 broken down
by separate test sequences compared to HM-16.18+SCM-
8.7 without proposed method.

Video Sequence Category Luma1

FlyingGraphics TGM1080 -0.1%

Desktop TGM1080 -0.3%

Console TGM1080 0.1%

ChineseEditing TGM1080 -0.4%

WebBrowsing TGM720 -0.4%

Map TGM720 -0.7%

Programming TGM720 -0.6%

SlideShow TGM720 -0.3%

BasketballScreen MixedCo. -1.5%

MissionControl2 MixedCo. -1.0%

MissionControl3 MixedCo. -1.3%

Robot Animation -0.1%

ChinaSpeed Animation -3.0%

Average -0.7%

Table 7 shows the details for every test sequence of Table 6
the percentages are as expected and the test sequences:
FlyingGraphics, Console, and Robot are outliers and
contributes only minimal.

E. Dictionary visualization

Figure 2. Visual dictionary comparison - animation (left)
and TGM1080 (right).

Figure 2 shows two subsets of two dictionaries. As expected,
each category develops a slightly different dictionary adapted
to the number base. Animation on the left side contains a lot of
vertical atoms as well as some unusual, round, and cloud-like
patterns. On the right side is a subset of a TGM1080 dictionary
which shows almost only straight horizontal and vertical
atoms.

F. PSNR vs Bitrate

The proposed method is optimized to lower the bitrate and
not mainly to improve PSNR, the reason is that for a higher
PSNR, more sparse atoms are usually needed to achieve this,
but our method focuses on low sparsity where the maximum
sparsity is only 4, which is the reason why QP22 is not
performing well.

Figure 3. Average rate-distortion curve of all test
sequences in comparison with the maximum BD setup
(maxBD), medium BD setup (medBd) against HM-
16.18+SCM-8.7.

Figure 3 shows an average RDO curve of all test sequences for
the maximum and medium BD-rate setup, in comparison with
a HEVC-SCC reference run (AllToolsOn). The PSNR/bitrate
curves get closer together with higher PSNR/bitrate. Usually,
the proposed method compresses well between QP27 and
QP32. QP22 performs badly because the side information
increases significantly but is limited by the already mentioned
maximum sparsity setup, so that it is not often selected by the
RDO process. Due to bitrate limitations, in QP37, usually only
one sparse atom is optimal to represent the residual block and,
in many cases, the RDO performance of IntDST/IntDCT is
better. The major problem for QP22 and QP37 is that the
sparse index is encoded in fixed length with the CABAC
engine bypassed, due to its uniform distribution. In contrast, all
side information of the IntDST/IntDCT process are CABAC
encoded.

V. VISUALIZATION SPARSE CODED BLOCKS

Figure 4 Coded blocks of proposed method for
FlyingGraphics test sequence

35.8
36.8
37.8
38.8
39.8
40.8
41.8
42.8
43.8
44.8
45.8
46.8
47.8

15000 35000

Y
PS

N
R

(D
B)

BITRATE (KBPS)

Y PSNR VS BITRATE

AllToolsOn
medBD
maxBD

Authorized licensed use limited to: Santa Clara University. Downloaded on December 05,2021 at 18:38:21 UTC from IEEE Xplore. Restrictions apply.

The proposed method does not compress texts because this is
usually done by the HEVC-SCC tools IBC and Palette Mode.
Additionally, the maximum overall sparse limitation is set to
only 4, which prevents encoding high frequency blocks and
especially high frequency text blocks. This can be seen in
Figure 4, where all text blocks are encoded with the standard
HEVC-SCC tools and in Figure 5, where the Chinese
characters at the bottom left are not encoded by the proposed
method. Interestingly, in Figure 4 the proposed method is used
for simple planar blocks and for blocks with straightforward
lines which can also be seen in Figure 5.

Figure 5 Coded blocks of proposed method for
ChinaSpeed test sequence.

Figure 5 represents a more general observation which shows,
as mentioned before, blocks with planar characteristics and
some straightforward lines where the direction of the lines
does not matter.

VI. CONCLUSION AND FUTURE WORK

 In this work, we successfully adapted an unusual sparse
coding scheme to HEVC-SCC which targets similar and
repeated low to mid frequency/energy intra predicted residuals
with a low sparsity setup. Experimental results show an
improved BD-rate savings of up to 4.6% for a maximum BD-
rate savings configuration, but it comes with a ninefold
execution time increase. A medium BD rate savings
configuration where the proposed method is not used for QP22,
and for block sizes 4x4 and 32x32, resulted in 2.5% BD-rate
savings and an execution time increase by 103%, and a low
BD-rate savings configuration for the 8x8 block size only
without QP22, reaches 0.7% BD-rate savings and a 24%
increase in execution time. Overall, the increased execution
time can be limited because the current implementation is a
C++ translation of a generic OMP MATLAB algorithm with

no optimizations at all, but sparse coding is computationally
demanding so there will always be an increase in execution
time. The reason why the proposed method works successfully
is that the standard HEVC-SCC prediction process is not
optimal enough to include tiny differences that sum up as
prediction errors and increases the residual data which needs to
be CABAC encoded. The approach to split up the test
sequences in categories and train dedicated dictionaries is
successful and without it the BD-rate savings decrease by half.
However, it also shows that the current category selection is
not perfect because the test sequences FlyingGraphics,
Console, SlideShow and Robot are outliers, and their BD-rate
savings are around 0. The approach also suggests that no single
dictionary alone can handle all the different applications, block
sizes, and QP settings. In future research, we will further
improve the proposed scheme with an online learning K-SVD
which should adapt better to various content and applications.

REFERENCES
[1] Jani Lainema, Frank Bossen, Woo-Jin Han, Junghye Min, and Kemal

Ugur, “Intra Coding of the HEVC Standard,” IEEE Transactions on
Circuits and Systems for Video Technology, Volume 22, Number 12,
December 2012.

[2] HEVC Reference Software HM-16.18+SCM-8.7 (2018 January)
[Online]. Available:
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-
16.18+SCM-8.7

[3] Jizheng Xu, Rajan Joshi, and Robert A. Cohen, “Overview of the
Emerging HEVC Screen Content Coding Extension”, IEEE Transactions
on Circuits and Systems for Video Technology, Volume 26, Issue 1, Jan.
2016.

[4] M. Aharon, M. Elad and A. M. Bruckstein, “K-SVD: An Algorithm for
Designing Overcomplete Dictionaries for Sparse Representation,” IEEE
Transactions on Signal Processing, Volume 54, Issue 11, pp. 4311–
4322, November 2006.

[5] Y. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal Matching
Pursuit: Recursive Function Approximation with Applications to
Wavelet Decomposition,” in Proceedings of 27th Asilomar Conference
on Signals, Systems and Computers, pp. 40–44 vol.1, November 1993.

[6] Rui Song, Cuiling Lan, Houqiang Li, Jizheng Xu and Feng Wu, “OMP-
based transform for inter coding in HEVC,” 2016 IEEE International
Symposium on Circuits and Systems (ISCAS), pp 798-801, August
2016.

[7] Je-Won Kang, Moncef Gabbouj and C.-C. Jay Kuo, “Sparse/DCT
(S/DCT) Two-Layered Representation of Prediction Residuals for Video
Coding”, IEEE Transactions on Image Processing, Volume 22 Issue 7,
pp.2711–2722, April 2013

[8] Je-Won Kang and C.-C. Jay Kuo, “Efficient Dictionary Based Video
Coding with Reduced Side Information,” 2011 IEEE International
Symposium of Circuits and Systems (ISCAS), July 2011.

[9] Madhusudan Kalluri, Minqiang Jiang, Nam Ling, Jianhua Zheng and
Philipp Zhang, “Adaptive RD Optimal Sparse Coding with Quantization
for Image Compression,” IEEE Transactions on Multimedia, Volume
21, Issue 1, pp 39-50, June 2019.

[10] L. Limin and T. Alexis, “Rate distortion optimized quantization in the
JM reference software.” JVT-AA027, 2008.

[11] Haoping Yu, “Common test conditions for screen content coding”,
JCTVC-Z1015, 2017.

[12] Joel Sole, Rajan Joshi, Nguyen Nguyen, Tianying Ji, Marta Karczewicz,
Gordon Clare, Félix Henry and Alberto Duenas, “Transform Coefficient
Coding in HEVC,” IEEE Transactions on Circuits and Systems for
Video Technology, Volume 22, Number 12, December 2012.

[13] Karsten Suehring, “JVET common test conditions and software
reference configurations”, JVET-B1010, 2016.

Authorized licensed use limited to: Santa Clara University. Downloaded on December 05,2021 at 18:38:21 UTC from IEEE Xplore. Restrictions apply.

		2021-05-12T06:00:39-0400
	Preflight Ticket Signature

