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Abstract—High Efficiency Video Coding - Screen Content 
Coding (HEVC-SCC) is an extension to HEVC which adds 
sophisticated compression methods for computer generated 
content. A video frame is usually split into blocks that are 
predicted and subtracted from the original, which leaves a 
residual. These blocks are transformed by integer discrete sine 
transform (IntDST) or integer discrete cosine transform 
(IntDCT), quantized, and entropy coded into a bitstream. In 
contrast to camera captured content, screen content contains a 
lot of similar and repeated blocks. The HEVC-SCC tools utilize 
these similarities in various ways. After these tools are executed, 
the remaining signals are handled by IntDST/IntDCT which is 
designed to code camera-captured content. Fortunately, in sparse 
coding, the dictionary learning process which uses these residuals 
adapts much better and the outcome is significantly sparser than 
for camera captured content. This paper proposes a sparse 
coding scheme which takes advantage of the similar and repeated 
intra prediction residuals and targets low to mid 
frequency/energy blocks with a low sparsity setup. We also 
applied an approach which splits the common test conditions 
(CTC) sequences into categories for training and testing 
purposes. It is integrated as an alternate transform where the 
selection between traditional transform and our proposed 
method is based on a rate-distortion optimization (RDO) 
decision. It is integrated in HEVC-SCC test model (HM) HM-
16.18+SCM-8.7. Experimental results show that the proposed 
method achieves a Bjontegaard rate difference (BD-rate) of up to 
4.6% in an extreme computationally demanding setup for the 
“all intra” configuration compared with HM-16.18+SCM-8.7.  

Keywords— video coding, sparse coding, sparse representation, 
orthogonal matching pursuit, screen content coding, HEVC, 
residual coding, intra prediction, KSVD 

I. INTRODUCTION

A significant part of HEVC video compression is Intra 
prediction.  Intra signals are split into blocks, each intra block 
can chooses among 33 angular, DC and planar modes for a 
prediction of the original signal [1]. After an optimal prediction 
is found based on RDO, the predicted block is subtracted from 
the original block. The resulting residual represents the 
prediction error. The residual is then IntDST/IntDCT 
transformed, quantized, and entropy coded into a bitstream. 
HEVC-SCC, especially HM-16.18+SCM-8.7 [2] is an 
extension to HEVC.  It shares the same coding architecture as 
HEVC along with several new elements, some inherited from 
HEVC version 1 and some from HEVC-RExt. These include 
the adaptive color transform (ACT), adaptive motion vector 
resolution (AMVR), cross-component prediction (CCP), 
intra 

 

block copy (IBC), palette mode (PM), residual rotation (RR), 
residual differential pulse code modulation (RDPCM), and 
transform skip (TS). The rationale behind these tools is 
explained in [3]. Its purpose is to improve the compression of 
graphics, text, animation, and mixed content. Screen content 
has important properties such as no sensor noise, large uniform 
flat areas, many repeated patterns, highly saturated and limited 
colors, high contrast, discrete tones, sharp edges, and high 
frequencies in certain regions [3]. After applying all HEVC-
SCC tools, a significant amount of similar and repeated signals 
remains in the residual. A reason for this is the IBC tool which 
integrates the inter motion vector concept into the intra 
domain. As a result, IBC replaces a lot of similar and repeated 
intra predictions but keeps the residual transform process as it 
is.  

Sparse coding aims to find a sparse representation of the 
signal y in the form of a linear combination of basic elements. 
These elements are called atoms and they compose a 
dictionary. The dictionary can be found by the K-singular-
value decomposition (K-SVD) algorithm [4]. An atom contains 
the index to the dictionary entry as also the coefficient which 
represents the magnitude to which the dictionary entry is later 
linearly added to reconstruct the signal. The proposed method 
uses Orthogonal Matching Pursuit (OMP) [5] to solve equation 
(1).  

y ∈ ℝ  y = signal, n = signal dimension 

𝐃 ∈ ℝ    D = dictionary, K = # of atoms 

𝐱 ∈ ℝ  x = vector of coefficients 

Approximated representation of y: 

min
𝐱

‖𝐲 − 𝐃𝐱‖  s. t.  ‖𝐱‖ ≤ 𝜀    (1) 

‖∙‖  represents the L2 norm and ‖∙‖  the L0 pseudo norm.  

Existing sparse coding research covers the topic from 
different angles. However, sparse coding of similar and 
repeated intra predicted residuals with low to mid 
frequency/energy blocks and a low sparsity setup for screen 
content video compression has not been discussed. Most 
research applies sparse coding to camera captured inter 
prediction residuals like [6] which handles anisotropic 
correlation (high frequency, sharp edges) signals or [7] which 
puts DCT and sparse coding in a sequence for a two-layered 
approach (both in HEVC). Work [8] is an example of a video 
compression paper that used matching pursuit to code inter and 
intra prediction residuals. It was integrated into the H.264 
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standard and replaced the core transforms through an adaptive 
mixed transform scheme. Sparse coding of intra prediction 
residuals is discussed most in papers which use it in image 
compression like [9].  

In this work, we propose a method integrated into HEVC-
SCC to compress intra prediction residuals with an alternate 
sparse coding transform and an offline dictionary training 
process that is adapted for similar and repeated low to mid 
frequency/energy blocks with a low sparsity setup. In general, 
HEVC-SCC checks the standard IntDST/IntDCT process and 
calculates the RDO cost, then the proposed method is executed. 
If the proposed method’s RDO cost is lower than that of the 
standard process, the atoms of sparse vector x are encoded into 
a bitstream. The proposed sparse coding solution is set up for a 
low sparsity configuration which means maximum sparsity is 
set to 4. 

      The remainder of the paper is organized as follows: 
section 2 explains the proposed method, section 3 depicts 
implementation details, section 4 presents the experimental 
results, and section 5 gives the conclusion and future work. 

II. PROPOSED SPARSE CODING FOR SCC 

In HEVC-SCC, all HEVC-SCC and HEVC tools, are 
executed and RDO calculated, and the best RDO candidate is 
selected to be encoded into the bitstream. Our proposed 
method is executed and RDO calculated after this process is 
done, and only for the IntDST/IntDCT candidates. The 
IntDST/IntDCT process predict a given block, and calculated 
the residual block, by subtracting the predicted from the 
original block, quantize the residual block and entropy code the 
remaining into the bitstream, as depicted in the upper branch in 
Figure 1. RDO delivers an optimal approximation by 
minimizing the R-D cost J(k). The HEVC RDO process is 
based on [2][10]. 

𝐽(𝑘)  =  𝐷(𝑘)  +  𝜆𝑅(𝑘)  (2) 

  𝜆 = 0.57 × 2 .    (3) 
 

where k is the number of nonzero coefficients, R(k) is the 
number of bits after entropy coding, D(k) is the mean-squared 
error (MSE) between the original and the reconstructed image 
block, λ represents the Lagrange multiplier in HEVC [2][10] 
and QP is the quantization parameter.  

The proposed sparse coding solution, as depicted in the 
Figure 1 lower branch, is applied as an alternative transform. It 
specifically targets similar and repeated intra predicted 
residuals with a low to mid frequency/energy distribution and 
uses a low sparsity setup. The solution probes every residual 
block that has a low to medium absolute sum and uses only a 
maximum of 4 dictionary atoms. This low maximum sparsity 
setup is in many cases sufficient enough to be selected by the 
RDO process over the IntDST/IntDCT transform and saves 
execution time. Our proposed method uses an unusual in-loop-
quantization-scheme which means that quantization is part of 
the RDO process. HEVC’s rate-distortion optimized 
quantization (RDOQ) [10] is not used for quantizing sparse-
coefficients because the process is not well adapted to the one-
dimensional sparse coefficients, but the standard HEVC Qstep 
calculation is used for quantization and dequantization of 
sparse coefficients:   

𝑄𝑠𝑡𝑒𝑝(𝑄𝑃) = 2     (4) 

where QP represents the quantization parameter which is 
set in the common test conditions CTC [11] to 22, 27, 32, and 
37. After every sparse iteration, the coefficients are quantized 
and dequantized based on (4), entropy encoded, RDO cost 
calculated (see formulas (2) and (3)) and finally compared with 
the previous iteration. For the first iteration, the cost is high 
because the distortion is high, but it decreases with every 
iteration and atom until it reaches a minimum. Then, it 
increases again because the number of bits rises and makes the 
cost higher even as the distortion decreases. When the 
minimum is reached, the proposed method stops. If the RDO 
cost is less than the IntDST/IntDCT RDO cost, the sparse 
atoms are stored into the HEVC data structures and later 
encoded into the bitstream.  

As a second part of the proposed method, it is important 
that the offline K-SVD training process [4] is adapted to these 
similar and repeated low to mid frequency/energy blocks. To 
achieve this, a higher dictionary size k gives the K-SVD/OMP 
algorithm [4][5] more overall atoms to choose from plus K-
SVD parameter optimizations, which is explained in the 
implementation details. This decreases the average sparsity. 
We adopt a category approach applied to the training process 
based on the common test conditions CTC [11] categories. 
This better utilizes the uniformity in a specific category 
because the number bases in these screen content categories are 

Figure 1. Block diagram – In-loop-quantization RDO Intra prediction residual sparse coding scheme (qcoeffs = 
IntDST/IntDCT quantized coefficients, qatoms = quantized sparse coefficients and sparse indices) 
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similar. These categories are animation (A), mixed content 
(MC), and text and graphics with motion (TGM). Overall, the 
similarity in the residual blocks training data has a significant 
impact on the dictionary training process [4]. It better 
converges to this training setup and creates dictionaries which 
significantly improve and encourage the sparsity in contrast to 
camera captured content. It needs less dictionary atoms to 
come to the same results, which saves bits and makes sparse 
coding in the RDO process more suitable. 

III. IMPLEMENTATION DETAILS 

 The HM16.18 HEVC CABAC engine is used to entropy 
code most of the proposed method side information. Every 
intra predicted residual block is extended by a flag which states 
whether our method or IntDST/IntDCT transforms are used. 
All sparse indices are coded in fixed length (CABAC bypass) 
code because of the uniform distribution. The sparse 
coefficient coding closely follows the standard “transform 
coefficient coding” [12] with minor optimizations and own 
context models. Every QP setting has the same maximum 
sparsity setting of 4 for every block size, which sets a low 
upper bound of iterations per sparse execution. This low upper 
bound saves RDO cost and computational time, as well as 
emphasizes low to mid frequency/energy blocks since only a 
limited amount of iterations are executed (maximum 4 
iterations). 

The training data, which is basically all intra predicted residual 
blocks with an absolute sum > 0, is created by a separated HM-
16.18+SCM-8.7 [2] run. All CTC [11] test sequences are split 
20% for training and 80% for testing. These trained files are 
grouped and randomly shuffled into the mentioned categories 
(based on CTC [11]) which goes into an offline K-SVD 
training process [4]. The process itself is optimized for a low 
sparsity setup, which emphasizes similar and repeated low to 
mid frequency/energy blocks. The KSVD-hyperparameters are 
set as follows: dictionary K size is 2,048, the number of atoms 
for training is set to only 2, and 800 iterations per dictionary 
are executed. Another optimization is to take the training data 
from a higher quantization training run than used for the test 
execution. As a rule, higher quantization setup leads to greater 
similarity and repetition in the residual training data, which 
encourages a sparser representation. Overall, there are three 
dictionaries per category and block size. These offline learned 
static dictionaries are included in the encoder and decoder, so 
that only the sparse atoms and not the dictionaries themselves 
are encoded in a bitstream. 

IV. EXPERIMENTAL RESULTS 

 The proposed solution is implemented on the HEVC 
reference software HM-16.18+SCM-8.7 [2]. The test setup 
follows the common test conditions (CTC) [11] which tests 13 
screen content sequences in four different QP settings: 22, 27, 
32 and 37. Our setup diverts at one point, it uses 20% of the 
frames of each test sequence for training and the remaining 
80% for testing and this separation is strict, so that there are no 
training data included in the result tables. The proposed 
method is used in three configurations: a maximum BD setup, 
a medium BD setup, and a low BD setup. The maximum BD 
setup, which tries to get as much BD-rate savings as possible 
while ignoring the execution time, uses the following 

configuration: “all intra,” QP settings 22, 27, 32, and 37, block 
sizes 4x4, 8x8, 16x16, and 32x32, and 4:2:0 color scheme. In 
general, for the 4:2:0 color scheme, HEVC-SCC uses only four 
of seven HEVC-SCC tools: transform skip (TS), residual 
differential pulse-code modulation (RDPCM), intra block copy 
(IBC), and palette mode (PM) [3]. In contrast to the maximum 
BD setup, the medium BD setup focusses more on a lower 
execution time and is not using block sizes 4x4 and 32x32 and 
is not sparse coding at the QP 22 setting. Finally, the low BD 
setup, which is encoding only 8x8 block sizes, skips QP22 and 
the chroma part.  

A. Similarity comparison 

We compared the intra residual data between camera 
captured common test sequences [13] (except ClassF) and 
screen content common test sequences [11] with the number of 
repeated residual blocks and the average cosine similarity. All 
residual blocks from all test sequences are sorted and the 
cosine similarity for each pair is calculated by formula (5):   

 s(𝐚, 𝐛) =
∑  

|𝐚||𝐛|
 (𝑛 = vector dimension)    (5) 

 where a and b are neighbors. Then, the average of all 
results is taken. For camera captured content repeated blocks 
are 0.2% and the cosine similarity is 0.2, for screen content 
repeated blocks are 34.4% and cosine similarity is 0.4. As 
expected, for camera captured content each intra residual block 
is unique from the others and differs at least slightly. However, 
it is remarkable that for screen content the repetition (identical) 
of intra residual blocks is very high, which means 1/3 of all 
intra residual screen content blocks are duplicates. The cosine 
similarity is up by 50% from 0.2 to 0.4 for screen content (0 
means orthogonal, 1 means match). 

B. Test results for maximum BD-rate savings setup 

Table 1 – Test results for the maximum BD-rate savings 
setup of the proposed method for block sizes: 4x4, 8x8, 
16x16, and 32x32 and QP settings: 22, 27, 32, and 37, 
compared to HM-16.18+SCM-8.7. 

Category Luma1  Cr1 Cb1 Enc 
Time 

TGM720&1080 -3.0% -1.6% -1.8% 1,018 

MixedContent -9.0% -5.3% -5.0% 1,025 

Animation -4.4% -0.5% -1.7% 1,034 

Average -4.6% -2.3% -2.6% 1,022 

 
Table 1 shows what the maximum upper bound for the 
proposed method is. This is the maximum setup without 
consideration for the computational complexity. It is obvious 
that this setup is not useable since the increase in execution 
time is more than ninefold higher and the decoder execution 
time is slightly even higher than the encoder execution time. 
Nonetheless, it gives an upper limit to what the proposed 
method is capable of, if complexity did not matter, even though 
in practice it does. The percentage of proposed method block 
selection over the block sizes 4x4, 8x8, 16x16, and 32x32 are 
3.0%, 19.6% 27.8%, and 30.2%, which is overall 20.2%. The 

 
1 BD-rate savings (piecewise cubic) 
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low number for the 4x4 block size reflects that 4x4 only 
minimally contributes to the overall outcome. In general, 
bigger block sizes lead to bigger BD-rate savings, but at the 
same time the execution time exponentially increases. 

Table 2 Detailed BD-rate savings of Table 1 broken down 
by separate test sequences compared to HM-16.18+SCM-
8.7. 

Video Sequence Category Luma1 Cr1 Cb1 

FlyingGraphics TGM1080 0.3% 0.9% 0.9% 
Desktop TGM1080 -2.4% -1.2% -1.1% 
Console TGM1080 0.2% 0.6% 0.5% 
ChineseEditing TGM1080 -3.8% -2.1% -2.2% 

WebBrowsing TGM720 -6.1% -5.0% -5.3% 
Map TGM720 -8.1% -5.8% -6.2% 
Programming TGM720 -3.0% 0.3% -0.5% 
SlideShow TGM720 -1.3% -0.2% -0.7% 

BasketballScreen MixedCo. -15.3% -9.2% -8.5% 
MissionControl2 MixedCo. -4.0% -2.1% -1.8% 
MissionControl3 MixedCo. -7.8% -4.7% -4.9% 

Robot Animation 0.2% 2.9% 1.3% 
ChinaSpeed Animation -9.0% -3.9% -4.8% 

Average  -4.6% -2.3% -2.6% 

 
Table 2 shows the details for every test sequence of Table 1. It 
is interesting that through all tests, there will be 3 to 4 outliers 
which are close to 0% BD-rate savings depending on the test 
configuration, but the overall relation between the percentages 
stays close for all setups only the absolute value varies. 

Table 3 Number of sparse atoms in different block size. 

Atoms 4x4 8x8 16x16 32x32 

1 3,116,984 2,873,928 906,312 242,417 
2 553,719 1,052,425 686,473 289,251 
3 95,908 441,428 286,365 130,763 
4 5,307 191,448 562,597 357,931 

 
Table 3 shows the distribution for how many sparse atoms are 
used in which block size and for all QP settings 22, 27, 32 and 
37 summed up. Interestingly, most sparse coded blocks use 
only one to two sparse atoms. The irregularity in the block 
size columns 16x16 and 32x32 between atoms 3 to 4 is 
unknown and could indicate an error or a statistical 
irregularity because it is not strictly decreasing. The average 
sparsity for 4x4, 8x8, 16x16, and 32x32 blocks are 1.2, 1.6, 
2.2, and 2.6.  

C. Test results for medium BD-rate savings setup 

Based on RDO performance, we removed block size 4x4 
because it does not contribute a lot, block size 32x32 because 
the sparse coding complexity is extremely high, and QP22 
because the amount of side information increases significantly 
with higher QP [7][8], which makes sparse coded blocks less 
attractive in the RDO process and lowers the partial BD-rate 
savings contribution to around -0.1% to -0.2%.  

Table 4 Test results on the medium BD-rate savings setup 
for the proposed method, compared to HM-16.18+SCM-
8.7. 

Category Luma2  Cr1 Cb1 Enc 
Time 

Dec 
Time 

TGM720& 
TGM1080 

-1.3% -0.9% -1.1% 201% 228% 

Mixed 
Content 

-5.1% -3.5% -3.1% 199% 164% 

Animation -3.5% -2.8% -3.1% 217% 286% 

Average -2.5% -1.8% -1.8% 203% 219% 

 
Table 4 shows the results of a medium BD-rate savings setup 
which takes the time complexity a bit more into consideration. 
This setup has a BD-rate savings of 2.5%, but still exceeds the 
encoding time by 103% and the decoding time by 119%.  

Table 5 Detailed BD-rate savings of Table 4 broken down 
by separate test sequences compared to HM-16.18+SCM-
8.7. 

Video Sequence Category Luma1 Cr1 Cb1 
FlyingGraphics TGM1080 -0.1% 0.0% 0.0% 
Desktop TGM1080 -1.1% -0.5% -0.6% 
Console TGM1080 0.1% -0.1% -0.1% 
ChineseEditing TGM1080 -2.2% -1.3% -1.5% 
WebBrowsing TGM720 -1.8% -1.8% -1.8% 
Map TGM720 -2.9% -2.3% -2.5% 
Programming TGM720 -2.2% -1.0% -1.2% 
SlideShow TGM720 -0.3% -0.3% -0.6% 
BasketballScreen MixedCo. -6.1% -4.0% -3.4% 
MissionControl2 MixedCo. -3.5% -2.9% -2.4% 
MissionControl3 MixedCo. -5.6% -3.8% -3.5% 
Robot Animation -0.1% 0.0% -0.3% 
ChinaSpeed Animation -6.8% -5.6% -5.9% 
Average  -2.5% -1.8% -1.8% 

 
Table 5 shows the details for every test sequence of Table 4 
and the percentages varies as expected. 

D. Test results for low BD-rate savings setup 

Table 6 Test results on the low BD-rate savings setup for 
the proposed method, compared to HM-16.18+SCM-8.7. 

Category Luma3  Enc Time Dec Time 

TGM720& 
TGM1080 

-0.3% 123% 117% 

Mixed Content -1.2% 124% 109% 

Animation -1.6% 128% 120% 

Average -0.7% 124% 115% 

 
Table 6 shows the results of the low BD rate setup, which has 
a BD-rate savings of 0.7%, and the encoding time is increased 
only by 24% and the decoding time by 15%.  

 
2 BD-rate savings (piecewise cubic) 
3 BD-rate savings (piecewise cubic) 
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Table 7 Detailed BD-rate savings of Table 6 broken down 
by separate test sequences compared to HM-16.18+SCM-
8.7 without proposed method. 

Video Sequence Category Luma1 

FlyingGraphics TGM1080 -0.1% 

Desktop TGM1080 -0.3% 

Console TGM1080 0.1% 

ChineseEditing TGM1080 -0.4% 

WebBrowsing TGM720 -0.4% 

Map TGM720 -0.7% 

Programming TGM720 -0.6% 

SlideShow TGM720 -0.3% 

BasketballScreen MixedCo. -1.5% 

MissionControl2 MixedCo. -1.0% 

MissionControl3 MixedCo. -1.3% 

Robot Animation -0.1% 

ChinaSpeed Animation -3.0% 

Average  -0.7% 

 
Table 7 shows the details for every test sequence of Table 6 
the percentages are as expected and the test sequences: 
FlyingGraphics, Console, and Robot are outliers and 
contributes only minimal.  

E. Dictionary visualization 

 

Figure 2. Visual dictionary comparison - animation (left) 
and TGM1080 (right). 

Figure 2 shows two subsets of two dictionaries. As expected, 
each category develops a slightly different dictionary adapted 
to the number base. Animation on the left side contains a lot of 
vertical atoms as well as some unusual, round, and cloud-like 
patterns. On the right side is a subset of a TGM1080 dictionary 
which shows almost only straight horizontal and vertical 
atoms. 

F. PSNR vs Bitrate 

The proposed method is optimized to lower the bitrate and 
not mainly to improve PSNR, the reason is that for a higher 
PSNR, more sparse atoms are usually needed to achieve this, 
but our method focuses on low sparsity where the maximum 
sparsity is only 4, which is the reason why QP22 is not 
performing well.  
 

 

 

Figure 3. Average rate-distortion curve of all test 
sequences in comparison with the maximum BD setup 
(maxBD), medium BD setup (medBd) against HM-
16.18+SCM-8.7. 

Figure 3 shows an average RDO curve of all test sequences for 
the maximum and medium BD-rate setup, in comparison with 
a HEVC-SCC reference run (AllToolsOn). The PSNR/bitrate 
curves get closer together with higher PSNR/bitrate. Usually, 
the proposed method compresses well between QP27 and 
QP32. QP22 performs badly because the side information 
increases significantly but is limited by the already mentioned 
maximum sparsity setup, so that it is not often selected by the 
RDO process. Due to bitrate limitations, in QP37, usually only 
one sparse atom is optimal to represent the residual block and, 
in many cases, the RDO performance of IntDST/IntDCT is 
better. The major problem for QP22 and QP37 is that the 
sparse index is encoded in fixed length with the CABAC 
engine bypassed, due to its uniform distribution. In contrast, all 
side information of the IntDST/IntDCT process are CABAC 
encoded. 

V. VISUALIZATION SPARSE CODED BLOCKS 

 

Figure 4 Coded blocks of proposed method for 
FlyingGraphics test sequence  
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The proposed method does not compress texts because this is 
usually done by the HEVC-SCC tools IBC and Palette Mode. 
Additionally, the maximum overall sparse limitation is set to 
only 4, which prevents encoding high frequency blocks and 
especially high frequency text blocks. This can be seen in 
Figure 4, where all text blocks are encoded with the standard 
HEVC-SCC tools and in Figure 5, where the Chinese 
characters at the bottom left are not encoded by the proposed 
method. Interestingly, in Figure 4 the proposed method is used 
for simple planar blocks and for blocks with straightforward 
lines which can also be seen in Figure 5. 
 

 

Figure 5 Coded blocks of proposed method for 
ChinaSpeed test sequence. 

Figure 5 represents a more general observation which shows, 
as mentioned before, blocks with planar characteristics and 
some straightforward lines where the direction of the lines 
does not matter. 

VI. CONCLUSION AND FUTURE WORK 

 In this work, we successfully adapted an unusual sparse 
coding scheme to HEVC-SCC which targets similar and 
repeated low to mid frequency/energy intra predicted residuals 
with a low sparsity setup.  Experimental results show an 
improved BD-rate savings of up to 4.6% for a maximum BD-
rate savings configuration, but it comes with a ninefold 
execution time increase. A medium BD rate savings 
configuration where the proposed method is not used for QP22, 
and for block sizes 4x4 and 32x32, resulted in 2.5% BD-rate 
savings and an execution time increase by 103%, and a low 
BD-rate savings configuration for the 8x8 block size only 
without QP22, reaches 0.7% BD-rate savings and a 24% 
increase in execution time. Overall, the increased execution 
time can be limited because the current implementation is a 
C++ translation of a generic OMP MATLAB algorithm with 

no optimizations at all, but sparse coding is computationally 
demanding so there will always be an increase in execution 
time. The reason why the proposed method works successfully 
is that the standard HEVC-SCC prediction process is not 
optimal enough to include tiny differences that sum up as 
prediction errors and increases the residual data which needs to 
be CABAC encoded. The approach to split up the test 
sequences in categories and train dedicated dictionaries is 
successful and without it the BD-rate savings decrease by half. 
However, it also shows that the current category selection is 
not perfect because the test sequences FlyingGraphics, 
Console, SlideShow and Robot are outliers, and their BD-rate 
savings are around 0. The approach also suggests that no single 
dictionary alone can handle all the different applications, block 
sizes, and QP settings. In future research, we will further 
improve the proposed scheme with an online learning K-SVD 
which should adapt better to various content and applications. 
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