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Abstract—Today, visual data compression is essential not only
for human perception but also for machine analysis. With the
growing volumes of visual data, challenges in data storage
and transmission demand advanced compression techniques for
downstream tasks. Most current works focus on either single-
modal compression or multimodal compression without unifying
the modalities effectively. In this study, we introduce a bird’s-
eye-view (BEV)-based multimodal compression framework that
jointly compresses camera images and LiDAR point clouds to
enhance the accuracy of downstream tasks. A core innovation of
our approach is the inception-triggered soft element-wise mask,
which leverages multi-scale feature extraction to effectively cap-
ture richer information and reduces spatial-channel redundancy.
Compared to the existing state-of-the-art methods, our proposed
framework has achieved BD-rate gains of 88.12% for 3D object
detection and 98.71% for BEV map segmentation compared to
the referenced BEV-based compression framework and 95.43%
for 3D object detection compared to the referenced multimodal
compression framework.

Index Terms—3D object detection, bird’s-eye-view map seg-
mentation, coding for machines, image compression, multimodal
learning

I. INTRODUCTION

In recent years, the rapid development of computer vision
has significantly advanced real-world visual recognition sys-
tems, such as those in autonomous vehicles. Camera-based
machine vision systems [1]–[3] provide rich semantic infor-
mation, which is advantageous for 2D vision tasks. However,
they lack the geometric information that is critical in 3D
settings. In contrast, LiDAR-based machine vision systems
[4]–[6] excel in 3D vision tasks, as the LiDAR point cloud
captures geometric details that spatially describe environments
and precisely locate objects. To take advantage of both camera
and LiDAR systems, recently multimodal machine vision
systems [7]–[9] have been a promising solution for visual
recognition. These systems integrate data from camera and
LiDAR sensors into a unified feature space, which then serve
for specific downstream tasks such as classification, detection,
and segmentation. For example, BEVFusion [7] unifies camera
and LiDAR data into a shared bird’s-eye-view (BEV) repre-
sentation space and demonstrates that BEV-based multimodal
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frameworks outperform BEV-based single-modal frameworks
in both 3D object detection and BEV map segmentation tasks.

However, in real-world applications, sensor data is captured
locally in vehicles and then transmitted to remote servers for
analysis. Therefore, visual recognition systems face challenges
due to the large volume of data transmission. To optimize
bandwidth during data transmission while ensuring high ac-
curacy in downstream vision tasks, efficient compression for
machine recognition has become an urgent necessity. Current
compression methods for machine vision involved in 3D set-
tings are mainly implemented in the 3D space [10]–[12]. Some
studies have focused on compression of LiDAR-transformed
BEV features for machine vision tasks [13]. In recent years,
multimodal compression has been a new direction for machine
visual recognition. Existing methods either leave multimodal
data in separated domains [14], [15] or unify them in 3D space
[16].

In this paper, we propose a novel BEV-based multimodal
compression framework BEV-MMC for 3D object detection
and BEV map segmentation. Our motivation is, BEVFusion
[7] has demonstrated BEV-based multimodal perception sys-
tems that integrate multimodal data in a unified BEV domain
are more powerful than single-modal systems and less complex
than multimodal systems that unify features in other domains.
Our proposed framework extracts BEV features from camera
images and LiDAR point clouds separately and fuses them into
a shared BEV domain then compresses the fused features for
the downstream 3D object detection and BEV map segmenta-
tion tasks. Additionally, we introduce an inception-triggered
soft element-wise mask module that provides an adaptive
solution to the variation of sparsity in fused BEV features. This
mask is element-wise multiplied to fused BEV representation,
significantly reducing bit rates during compression. To our
knowledge, BEV-MMC is the first BEV-based multimodal
compression framework for 3D object detection and BEV map
segmentation tasks. The key contributions of this paper are as
follows:

• For the first time in the literature, we propose a BEV-
based multimodal (camera and LiDAR) compression
framework for 3D object detection and BEV map seg-
mentation.

• We propose a fusion module that comprises a CNN-based



fuser and an inception-triggered soft element-wise mask,
which adaptively selects informative multimodal BEV
features for compression.

• We demonstrate that joint optimization of the feature
fusion module and the compression model can achieve
high coding efficiency for the downstream machine vision
tasks.

II. RELATED WORK

A. 3D Visual Recognition

Based on the input data, 3D visual recognition can be
categorized into camera-based, LiDAR-based, and multimodal
approaches, with the latter garnering significant interests
in recent years. Camera-based methods primarily focus on
compensating for the lack of depth information, which is
crucial for 3D object detection [17], [18]. Depth prediction
methods assist research in transforming camera images from
a perspective view into a bird’s-eye-view (BEV) by using a
view transformer [19]–[22]. LiDAR-based methods typically
either directly extract global point cloud features [4], [23], or
voxelize the original point clouds to a lower resolution then
extract BEV features [24]–[26]. Since LiDAR point clouds
provide geometric information while camera images offer
semantic information, methods that extract features from both
modalities and fuse them into a unified feature space such as
the BEV space have shown superior performance compared to
approaches that rely on a single-modal [7], [9], [27].

B. Compression for Machine Visual Recognition

Compression for machine vision tasks can be categorized
as single-modal or multimodal compression. One research
trend of single-modal methods compresses LiDAR 3D point
cloud in the original 3D space. For instance, SPCGC [12]
separates geometric and semantic information, compressing
them with distinct modules then concatenating the two infor-
mation for downstream analysis. In contrast, some studies [10],
[28] compress point cloud’s geometry and attributes together
and perform downstream tasks based on the reconstructed
point cloud. PCHM-Net [11] and HM-PCGC [29] focus on
balancing compression for human and machine vision tasks.
PCHM-Net introduces two parallel compression branches for
human and machine vision, utilizing encoder-decoder mod-
ules that share identical architectures and weights across
branches. HM-PCGC employs a framework where geometric
information is extracted via pretrained geometry encoders,
while semantic features are captured using a transformer-based
module. Additionally, HM-PCGC integrates a multi-objective
loss constraint, combining geometry and semantic constraints
to balance performance for human and machine vision tasks
effectively. A newer research direction in this stream involves
implementing compression process in a transformed feature
space, rather than in the original 3D space. One such method,
PC4M [13] first compresses extracted LiDAR-only BEV fea-
tures and then performs 3D object detection and BEV map
segmentation based on the reconstructed BEV features.

As to multimodal methods, one stream of research keeps
multimodal data in their original domains. FUTR3D-based
[30] methods first separately extract features from camera and
LiDAR data then fuse them with a series of anchors to query
useful features from each source. Finally queried informative
features are compressed for downstream tasks [14]. A multi-
object tracking study [15] also separately extracts features
from LiDAR and camera data without integrating them into a
unified domain. It generates two attention-based soft masks,
which are applied to each feature source through element-wise
multiplication. After that, the two masked features are fused
for compression and downstream analysis. Another study [31]
extracts depth information from camera image to assist the
compression of LiDAR point cloud geometric information,
rather than to perform machine tasks. On the other hand,
some works have explored to unify multimodal data in 3D
space [16]. It first transforms camera image into point cloud
by using PENet [32], then combines the transformed camera
data with the LiDAR point cloud. The combined point cloud is
subsequently voxelized for feature extraction, and the extracted
features are losslessly compressed for downstream tasks.

III. PROPOSED METHOD

Fig. 1 shows our proposed BEV-based multimodal com-
pression framework BEV-MMC. It has four main compo-
nents: BEV feature extractors, a fusion module, a compression
model, and a task head. We adopt the pretrained feature
extractors and task head from BEVFusion [7], which has
pioneered the BEV domain integration of multimodal inputs
for visual recognition. The compression model we employ is
MSRB [33] due to its balance of complexity and effectiveness.

A. The Overall Framework

The feature extractors FEc and FEl first extract BEV
features bc and bl from the raw camera images xc captured
by 6 cameras and LiDAR point cloud xl, respectively. Then,
bc and bl are stacked channel-wise to form bs, which is
processed by a CNN-based fuser FS to produce the fused
BEV feature bf . An inception module I and a mask module
M further extract and select features from bf to generate
a soft mask m which is then element-wise multiplied with
bf , resulting in the masked feature xm. Then a compression
model C compresses xm into a bit stream and reconstructs
the masked feature x̂m. Finally, x̂m is fed into the task head
H to output the visual recognition results p.

B. Baseline Model

We define a baseline model BEV-MMC-c that consists of
feature extractors FEc and FEl, the fuser FS, the compres-
sion model C and the task head H. We train the weights of
C, while the weights of FEc, FEl, FS and H are from the
pretrained BEVFusion model [7] and are frozen. We adopt the



Fig. 1. The proposed BEV-MMC framework.

joint optimization [34] to the following loss function during
training:

L = R+ αD+wLtask

= E[−log2(pŷ|ẑ(ŷ|ẑ))] + E[−log2(pẑ|ψ(ẑ|ψ))]
+ α ·D(xm, x̂m) +wLtask,

(1)

where R is the bit rate loss of the quantized latent represen-
tations ŷ and ẑ, generated by the variational autoencoder and
the hyperprior autoencoder, respectively. D is the distortion
loss measured by the mean squared error (MSE) between
input BEV feature xm and reconstructed BEV feature x̂m,
w are the weights of the loss terms and Ltask are the task-
specific losses. Specifically, for 3D object detection, w =[
wc wh wr

]
, Ltask =

[
Lcls Lheatmap Lreg

]T
, where

Lcls is the cross-entropy loss of the predicted object class,
Lheatmap is the class-specific center heatmap loss proposed
by [35] and Lreg is the regression loss of the predicted 3D
object bounding box coordinates. For BEV map segmentation,
w = wm, Ltask = Lmap, which is the focal loss between the
ground-truth and predicted segmentation maps.

C. Joint Optimization of the Fuser and Compression Model

Fig. 2. BEV features: (a) camera BEV features, and (b) LiDAR BEV features.

Upon visualizing the camera and LiDAR BEV features
produced by the baseline model in Fig. 2 (a) and (b), we
observe significant redundancies in the camera BEV features.
This occurs because the pretrained FS in the BEVFusion

model is not optimized with an entropy loss, limiting its ability
to reduce bit rate consumption. To address this problem, we
define our second model BEV-MMC-f, which jointly trains FS
and C with the same network architecture and loss function
as the baseline model.

D. Inception-Triggered Soft Element-Wise Mask

To more effectively reduce redundancy, we propose an
inception-triggered soft element-wise mask to adaptively select
informative features from bf for compression. We start with a
simple CNN-based mask module M, which is placed between
FS and C. It generates a soft mask m ∈ [0, 1]H×W×C . The
element-wise multiplication is then performed between bf and
m to produce the filtered feature xm for compression. This
model is referred to as BEV-MMC-m. Further, to enhance the
effectiveness of mask-based information selection, we propose
an inception-like module I. It has five branches with different
kernel sizes: 7 × 7, 5 × 5, 3 × 3, 1 × 1, and global pooling,
as shown in Fig. 1. I and M process the fused BEV feature
bf to produce the soft mask m, followed by the element-wise
multiplication and compression. This enhanced model, named
BEV-MMC-i, is able to capture richer information by utilizing
multi-scale feature extraction.

IV. EXPERIMENTAL STUDIES

A. Dataset and Settings

The NuScenes dataset [36] is widely utilized in 3D per-
ception research due to its comprehensive and robust multi-
sensor data. Each sample in the NuScenes dataset includes six
images captured by cameras at different positions, along with a
point cloud generated by a 32-beam LiDAR scan. We train our
models for 3D object detection and BEV map segmentation
tasks on the NuScenes training set and evaluate them on the
NuScenes validation and test sets. We employ the AdamW
optimizer [37]. The training process begins with a learning
rate of 1e-4 for the first eight epochs, followed by a decay



of 0.1 for two additional epochs. A batch size of 8 is used
throughout all training processes.

To achieve various bit rates, we apply the following settings
to the loss function hyper parameters to train our models
BEV-MMC-f, BEV-MMC-m and BEV-MMC-i. For 3D object
detection, we set α to {16, 32, 64, 128, 256}, set wc and wh to
{1, 1, 2, 4, 8}, and set wr to {0.25, 0.25, 0.5, 1, 2}. For BEV
map segmentation, we set α to {16, 128, 256, 512, 1024} and
set wm to {0.5, 4, 8, 16, 32}.

The baseline model BEV-MMC-c is trained with different
loss function hyper parameters because its compression capa-
bility solely relies on C. For 3D object detection, we set α to
{1, 2, 4, 8, 16}, set wc and wh to {0.5, 1, 2, 4, 8}, and set wr
to {0.125, 0.25, 0.5, 1, 2}. For BEV map segmentation, we set
α to {8, 32, 64, 128, 256} and set wm to {0.25, 1, 2, 4, 16}.

B. Evaluation Metrics
We use bits per pixel (BPP) to measure coding efficiency.

Since this study involves multimodal inputs, our definition of
pixels refers to BEV-domain pixels instead of RGB-domain
pixels in traditional 2D visual compression. The evaluation
metric used for 3D object detection in this study is the mean
average precision (mAP) [36], [38], calculated across ten
object classes: car, truck, construction vehicle, bus, trailer,
barrier, motorcycle, bicycle, pedestrian, and traffic cone. For
BEV map segmentation, we use the mean intersection-over-
union (mIoU) [39], measured across six zones: drivable area,
pedestrian crossing, walkway, stop line, car parking area, and
lane divider. To measure model complexity, we adopt the
number of trainable parameters measured in millions (M) and
the amount of calculation measured in giga floating point
operations (GFLOPs).

Fig. 3. The rate-accuracy performance of 3D object detection on the nuScenes
validation set.

C. Quantitative Results
Fig. 3 presents the rate-mAP curves for 3D object detec-

tion on the nuScenes validation set, comparing our proposed
BEV-MMC frameworks (BEV-MMC-c, BEV-MMC-f, BEV-
MMC-m, and BEV-MMC-i) with PC4M-MSRB and PC4M
[13]. Both PC4M-MSRB and PC4M represent state-of-the-art
BEV-based LiDAR point cloud compression frameworks for
machine vision tasks. These frameworks utilize the pretrained
BEVFusion-L [7] as the visual recognition backbone, incor-
porating a BEV feature codec between the LiDAR feature ex-
traction module and the task-specific head. The key distinction

Fig. 4. The rate-accuracy performance of BEV map segmentation on the
nuScenes validation set.

Fig. 5. The rate-accuracy performance of 3D object detection on the nuScenes
test set.

lies in their codec designs: PC4M-MSRB employs the MSRB
model as the BEV feature codec, while PC4M enhances it with
a fusion block and an attention block. Similarly, our BEV-
MMC framework leverages the pretrained BEVFusion model
but stands out by extracting features from both camera and
LiDAR data and integrating them through a fusion module.
From the results, we observe that to achieve an mAP of 0.64,
the baseline model BEV-MMC-c requires more than 0.50 BPP,
BEV-MMC-f takes about 0.24 BPP, BEV-MMC-m lowers
the BPP to less than 0.15, and the best-performing model,
BEV-MMC-i, which incorporates the inception-based mask for
multi-scale feature selection, achieves the same performance
with less than 0.08 BPP. In contrast, PC4M demands about
0.70 BPP.

For BEV map segmentation, as illustrated in Fig. 4, at 0.10
BPP, BEV-MMC-c achieves approximately 0.57 mIoU, BEV-
MMC-f reaches 0.60 mIoU, BEV-MMC-m further improves
the mIoU to 0.61, and BEV-MMC-i achieves the highest
performance with 0.63 mIoU. In comparison, PC4M stays at
about 0.48 mIoU even increasing BPP to almost 0.80.

Fig. 5 shows the rate-mAP curves for 3D object detec-
tion on the nuScenes test set, comparing BEV-MMC-i with
Haizade24 [14], the state-of-the-art multimodal compression
framework for 3D object detection. To compare our results
with Haizade24, we adopt the same method for measuring cod-
ing efficiency. Specifically, we use the size of the compressed
bitstream (in kilobytes) that encodes six camera images and
one LiDAR point cloud. To achieve 0.64 mAP, Haizade24
takes about 15 kilobytes, whereas BEV-MMC-i only needs
0.3 kilobytes, which demonstrates our framework’s superior



TABLE I
BD-RATE GAIN WITH RESPECT TO DETECTION MAP AND SEGMENTATION MIOU (PC4M IS THE ANCHOR) AND MODEL COMPLEXITIES

Model Train C Train FS Train H Mask Inception BD-rate Parameters (/M) GFLOPs
Detection Segmentation Detection Segmentation Detection Segmentation

BEV-MMC-c ✓ -31.22 % -87.93 % 62.22 64.54 537.65 699.18
BEV-MMC-f1 ✓ ✓ -66.89 % -95.87 % 62.22 64.54 537.65 699.18
BEV-MMC-m ✓ ✓ ✓ ✓ -79.36 % -96.25 % 63.40 65.71 575.91 737.44
BEV-MMC-i ✓ ✓ ✓ ✓ ✓ -88.12 % -98.71 % 65.04 67.34 628.92 790.46
1 Our experiments show that jointly training H doesn’t improve the prediction accuracy of BEV-MMC-f.

Fig. 6. The visualization of 3D object detection and BEV map segmentation: (a) ground truth, (b) BEVFusion results with uncompressed inputs, and (c)
BEV-MMC-i results.

efficiency. The BD-rate gain of BEV-MMC-i compared to
Haizade24 is 95.43%.

Table I summarizes the BD-rate gains with PC4M as the
anchor, along with model complexities. Compared to PC4M,
our best model, BEV-MMC-i, achieves BD-rate gains of
88.12% for 3D object detection and 98.71% for BEV segmen-
tation. Despite incorporating the inception-triggered element-
wise soft mask, BEV-MMC-i increases trainable parameters
by only 3% and 5%, and GFLOPs by 13% and 17%, for 3D
object detection and BEV map segmentation respectively.

D. Visual Results

Fig. 6 shows the visual results, including ground truth, pre-
dictions from the BEVFusion model with uncompressed data,
and those from BEV-MMC-i at 0.17 BPP. The visualization
provides six camera images of different views and one point
cloud of BEV for the 3D object detection task, as well as one

BEV segmentation map for the BEV map segmentation task.
From these results, we observe that our proposed BEV-MMC-
i can locate the same objects as accurately as the BEVFusion
model and produce segmentation maps that closely align with
the ground truth, exhibiting remarkable precision.

V. CONCLUSIONS

In this work, we present a BEV-based multimodal compres-
sion framework for enhanced visual recognition. Our proposed
inception-triggered soft element-wise mask enables the fusion
module to effectively integrate BEV features extracted from
cameras and LiDAR and adaptively select salient information
for the subsequent compression process. Additionally, we
jointly train the fusion module, compression model, and task-
specific prediction head to balance coding efficiency and
prediction accuracy. Experimental results demonstrate that
our BEV-MMC framework outperforms referenced state-of-



the-art methods. For future research, we plan to incorporate
transformer structures into the fusion module to better capture
and utilize global information. We also aim to design a more
efficient feature codec specifically tailored for BEV features.
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[14] H. Hadizadeh and I. V. Bajić, “Learned multimodal compression for
autonomous driving,” in 2024 IEEE 26th International Workshop on
Multimedia Signal Processing (MMSP), pp. 1–6, 2024.

[15] X. Li, O. A. Hanna, C. Fragouli, S. Diggavi, G. Verma, and J. Bhat-
tacharyya, “Feature compression for multimodal multi-object tracking,”
in MILCOM 2023 - 2023 IEEE Military Communications Conference
(MILCOM), pp. 139–143, 2023.

[16] C. Tian, Z. Li, H. Yuan, R. Hamzaoui, L. Shen, and S. Kwong, “Feature
compression for cloud-edge multimodal 3d object detection,” 2024.

[17] T. Wang, X. Zhu, J. Pang, and D. Lin, “Probabilistic and geometric
depth: Detecting objects in perspective,” CoRR, vol. abs/2107.14160,
2021.

[18] H. Chen, W. Tian, P. Wang, F. Wang, L. Xiong, and H. Li, “Epro-pnp:
Generalized end-to-end probabilistic perspective-n-points for monocular
object pose estimation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–12, 2024.

[19] B. Pan, J. Sun, H. Y. T. Leung, A. Andonian, and B. Zhou, “Cross-view
semantic segmentation for sensing surroundings,” IEEE Robotics and
Automation Letters, vol. 5, p. 4867–4873, July 2020.

[20] J. Philion and S. Fidler, “Lift, splat, shoot: Encoding images from
arbitrary camera rigs by implicitly unprojecting to 3d,” in Computer
Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XIV, (Berlin, Heidelberg), p. 194–210,
Springer-Verlag, 2020.

[21] T. Roddick and R. Cipolla, “Predicting semantic map representations
from images using pyramid occupancy networks,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 11135–11144, 2020.

[22] T. Roddick, A. Kendall, and R. Cipolla, “Orthographic feature transform
for monocular 3d object detection,” in British Machine Vision Confer-
ence, 2018.

[23] B. Graham, M. Engelcke, and L. v. d. Maaten, “3d semantic seg-
mentation with submanifold sparse convolutional networks,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 9224–9232, 2018.

[24] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4490–4499, 2018.

[25] M. Nie, Y. Xue, C. Wang, C. Ye, H. Xu, X. Zhu, Q. Huang, M. B. Mi,
X. Wang, and L. Zhang, “Partner: Level up the polar representation for
lidar 3d object detection,” 2023.

[26] S. Shi, L. Jiang, J. Deng, Z. Wang, C. Guo, J. Shi, X. Wang, and
H. Li, “Pv-rcnn++: Point-voxel feature set abstraction with local vector
representation for 3d object detection,” 2022.

[27] J. Fu, C. Gao, Z. Wang, L. Yang, X. Wang, B. Mu, and S. Liu,
“Eliminating cross-modal conflicts in bev space for lidar-camera 3d
object detection,” in 2024 IEEE International Conference on Robotics
and Automation (ICRA), pp. 16381–16387, 2024.

[28] M. Ulhaq and I. V. Baji’c, “Learned point cloud compression for
classification,” 2023 IEEE 25th International Workshop on Multimedia
Signal Processing (MMSP), pp. 1–6, 2023.

[29] X. Ma, Y. Xu, X. Zhang, L. Tang, K. Zhang, and L. Zhang, “Hm-pcgc: A
human-machine balanced point cloud geometry compression scheme,”
in 2023 IEEE International Conference on Image Processing (ICIP),
pp. 2265–2269, 2023.

[30] X. Chen, T. Zhang, Y. Wang, Y. Wang, and H. Zhao, “Futr3d: A
unified sensor fusion framework for 3d detection,” in 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 172–181, 2023.

[31] Y. Lin, T. Xu, Z. Zhu, Y. Li, Z. Wang, and Y. Wang, “Your camera
improves your point cloud compression,” in ICASSP 2023 - 2023 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5, 2023.

[32] M. Hu, S. Wang, B. Li, S. Ning, L. Fan, and X. Gong, “Penet:
Towards precise and efficient image guided depth completion,” in 2021
IEEE International Conference on Robotics and Automation (ICRA),
pp. 13656–13662, 2021.

[33] H. Fu, F. Liang, J. Liang, B. Li, G. Zhang, and J. Han, “Asymmetric
learned image compression with multi-scale residual block, importance
scaling, and post-quantization filtering,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 33, no. 8, pp. 4309–4321, 2023.

[34] C. Gao, Z. Li, L. Li, D. Liu, and F. Wu, “Rethinking the joint
optimization in video coding for machines: A case study,” in 2024 Data
Compression Conference (DCC), pp. 556–556, 2024.
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