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ABSTRACT Advances in moving object detection have been driven by the active application of deep
learning methods. However, many existing models render superior detection accuracy at the cost of high
computational complexity and slow inference speed. This fact has hindered the development of such models
in mobile and embedded vision tasks, which need to be carried out in a timely fashion on a computationally
limited platform. In this paper, we propose a super-fast (inference speed-154 fps) and lightweight (model
size-1.45 MB) end-to-end 3D separable convolutional neural network with a multi-input multi-output
(MIMO) strategy named “3DS_MM” for moving object detection. To improve detection accuracy, the
proposed model adopts 3D convolution which is more suitable to extract both spatial and temporal
information in video data than 2D convolution. To reduce model size and computational complexity, the
standard 3D convolution is decomposed into depthwise and pointwise convolutions. Besides, we proposed a
MIMO strategy to increase inference speed, which can take multiple frames as the network input and output
multiple frames of detection results. Further, we conducted the scene dependent evaluation (SDE) and scene
independent evaluation (SIE) on the benchmark CDnet2014 and DAVIS2016 datasets. Compared to state-
of-the-art approaches, our proposed method significantly increases the inference speed, reduces the model
size, meanwhile achieving the highest detection accuracy in the SDE setup and maintaining a competitive
detection accuracy in the SIE setup.

INDEX TERMS Convolutional neural network, depthwise convolution, moving object detection, multi-
input multi-output, pointwise convolution, scene independent evaluation, 3D separable convolution, unseen
videos, video analytics, video surveillance.

I. INTRODUCTION

W ITH the increasing amount of network cameras, pro-
duced visual data and Internet users, it becomes quite

challenging and crucial to process a large amount of video
data at a fast speed. Moving object detection (MOD) is the
process of extracting dynamic foreground content from the
video frames, such as moving vehicles or pedestrians, while
discarding the non-moving background. It plays an essential
role in many real-world applications [1], such as intelligent
video surveillance [2], medical diagnostics [3], anomaly de-

tection [4], human tracking and action recognition [5], [6].
Traditional methods [7]–[29] are unsupervised which do

not require labeled ground truth for algorithm development.
They usually include two steps: background modeling and
pixel classification. However, these traditional methods meet
difficulties when applied in complex scenarios, such as
videos with illumination changes, shadows, night scenes, and
dynamic backgrounds.

With the availability of a huge amount of data and the
development of powerful computational infrastructure, deep

VOLUME , 2021 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3123975, IEEE Access

B. Hou et al.: A Fast Lightweight 3D Separable CNN with MIMO for Moving Object Detection

neural networks (DNNs) [30]–[32] have shown remarkable
improvements in MOD problems and are developed to re-
place either background modeling or pixel classification in
traditional methods or to combine these two steps into an
end-to-end network. Existing DNN models are mostly su-
pervised approaches based on 2D convolutional neural net-
works (CNNs) [33]–[50], 3D CNNs [51]–[56], 2D separable
CNNs [57], or generative adversarial networks (GANs) [58]–
[63]. Besides, unsupervised GANs [64], [65] and semi-
supervised networks are also proposed [66]–[73]. It demon-
strates that the DNNs can automatically extract spatial low-,
mid-, and high-level features as well as temporal features,
which turn out to be very helpful in MOD problems.

While existing DNN models offer superior moving object
detection accuracy, they suffer from computationally expen-
sive and memory-intensive issues. In particular, the architec-
ture change in 3D CNNs leads to a huge increase in model
size and computational complexity compared to 2D CNNs,
making it challenging to apply those models to real-world
scenarios, such as robotics, self-driving cars, and augmented
reality. These tasks are usually deployed on mobile and em-
bedded devices, which have limited memory and computing
resources. Besides, these tasks are delay-sensitive and need to
be carried out in a timely manner, which cannot be achieved
by high-complexity deep learning models. Thus, we aim to
design a deep moving object detection model suitable for
mobile and embedded environment, that can achieve faster
inference speed and smaller model size while maintaining
high detection accuracy.

In this paper, we propose an efficient 3D separable con-
volutional neural network with a multi-input multi-output
strategy called “3DS_MM”. This model is tailored for
computation-resource-limited and delay-sensitive applica-
tions. Compared to state-of-the-art models, it significantly
increases inference speed and reduces model size, meanwhile
increasing detection accuracy or maintaining a competitive
detection accuracy. Our key contributions are as follows:

• We propose a new 3D separable CNN for moving object
detection. The proposed network adopts 3D convolution
to explore spatio-temporal information in the video data
and to improve detection accuracy. To reduce computa-
tional complexity and model size, the 3D convolution is
decomposed into a depthwise convolution and a point-
wise convolution. While existing 3D separable CNN
schemes all addressed other problems such as gesture
recognition, force prediction, 3D object classification or
reconstruction, our work applied it to the moving object
detection task for the first time in the literature.

• We propose a multi-input multi-output (MIMO) strat-
egy. While existing networks are single-input single-
output, multi-input single output, or two-input two-
output, our MIMO network can take multiple in-
put frames and output multiple binary masks using
temporal-dimension in each sample. This MIMO em-
bedded in 3D separable CNN can further increase model
inference speed significantly and maintain high detec-

tion accuracy. To the best of our knowledge, this is
the first time in the literature that such kind of MIMO
scheme is used in the MOD task.

• We demonstrate that the proposed 3DS_MM offers
overwhelmingly high inference speed in frames per
second (154 fps) and extremely small model size (1.45
MB), while achieving the best detection accuracy in
terms of F-measure, S-measure, E-measure, and MAE
among all models in scene dependent evaluation (SDE)
setup and achieving the best detection accuracy among
the models with inference speeds exceeding 65 fps in
scene independent evaluation (SIE) setup. The SDE
setup is widely used to tune and test the model on a
specific video as the training and test sets are from the
same video. The SIE setup originally raised in [50] is
specifically designed to assess the generalization capa-
bility of the model on completely unseen videos.

The rest of the paper is organized as follows. In Sec-
tion II, we introduce existing algorithms for moving object
detection. In Section III, we explain the principles of the
3D separable convolution which lays the foundation for our
proposed 3DS_MM. In Section IV, we elaborate on our pro-
posed network in detail. Section V explains the training and
evaluation setup of the experiments. Section VI describes our
experimental results compared to the state-of-the-art models.
Section VII concludes the paper.

II. RELATED WORKS
The methods for MOD problems have been extensively
studied and improved over the years. These methods can be
broadly categorized into: (1) traditional methods (unsuper-
vised learning), and (2) deep learning methods (supervised
and semi-supervised learning).

Traditional methods [7]–[29] are unsupervised which do
not require labeled ground truth. They basically consist of
two components: (1) background modeling which initializes
the background scene and updates it over time, and (2)
classification which classifies each pixel to be foreground or
background. There are many background modeling schemes,
such as the temporal or adaptive filters being applied to
build the background like running average background [10],
temporal median filtering [11], and Kalman filtering [12].
Another way for background modeling is to statistically
represent the background using parametric probability den-
sity functions such as a single Gaussian or a mixture of
Gaussians [13]. On the other hand, non-parametric methods
directly rely on observed data to model the background such
as IUTIS-5 [14], WeSamBE [15], SemanticBGS [16], and
kernel density estimation [17]. Sample consensus is another
non-parametric strategy used in PAWCS [18], ViBe [19] and
SuBSENSE [20]. In particular, SuBSENSE uses a feedback
system to automatically adjust the background model based
on the local binary similarity pattern (LBSP) features and
pixel intensities [21]. Eigen-background based on principal-
component analysis (PCA) [22]–[24] is also used in back-
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ground modeling. Further, background subtraction based
on robust principal-component analysis (RPCA) [25]–[29]
solves camera motion and reduces the curse of dimension-
ality and scale. However, it is quite difficult for traditional
methods to perform object detection in complex scenarios,
such as videos with illumination changes, shadows, night
scenes, and dynamic backgrounds.

Deep learning-based methods are mostly supervised and
have been recently proposed for MOD problems [30]–[32],
[42], [44]. The first work based on CNNs is ConvNet-
GT [33], which replaces the pixel classification component
with a well-defined network structure. The background is
estimated by a temporal median filter, then the estimated
backgrounds are stacked with the original video frames to
form the input of the CNN that outputs the binary masks
of detected objects. DeepBS [40] utilizes SuBSENSE [20]
algorithm to generate background image and multiple lay-
ers CNN for segmentation. Also, a spatial-median filter is
used for post-processing to perform smoothing. Wang et
al. [34] proposed a multi-scale patch-wise method with a
cascade CNN architecture called MSCNN+Cascade [34].
Although it achieves good detection performance, the patch-
wise processing is very time consuming. Other multi-scale
feature learning-based models such as Guided Multi-scale
CNN [35], MCSCNN [36], MsEDNet [37] and VGG-16 [74]
based networks FgSegNet_M [38] and FgSegNet_v2 [39]
were also proposed. FgSegNet_S [38] is a 2D CNN that takes
each video frame at its original resolution scale as the input,
while its extended version FgSegNet_M [38] takes each
video frame at three different resolution scales in parallel as
the input of the encoding network. FgSegNet_v2 is the best-
performing FgSegNet model in CDnet2014 [75] challenge.
Another example, MSFgNet [41], has a motion-saliency net-
work (MSNet) that estimates the background and subtracts it
from the original frames, followed by a foreground extraction
network (FgNet) that detects the moving objects.

3D convolution is applied to MOD problems to utilize
spatial-temporal information in visual data. In [52], 3D
CNN and a fully connected layer are adopted in a patch-
wise method. 3D-CNN-BGS [53] uses 3D convolution to
track temporal changes in video sequences. This approach
performs 3D convolution on 10 consecutive frames of the
video, and upsamples the low-, mid-, and high-level feature
layers of the network in a multi-scale approach to enhance
segmentation accuracy. 3DAtrous [54] captures long-term
temporal information in the video data. It is trained based
on a long short-term memory (LSTM) network with focal
loss to tackle the class imbalance problem commonly seen
in background subtraction. Another LSTM-based example
is the autoencoder-based 3D CNN-LSTM [55] combining
3D CNNs and LSTM networks. In this work, time-varying
video sequences are handled by 3D convolution to capture
short temporal motions, while the long short-term temporal
motions are captured by 2D LSTMs. Although these 3D
convolution-based methods offer accurate detection results,
they have high computational complexity.

Recently, the concept of generative adversarial net-
works (GAN) is adopted in MOD problems, such as BSc-
GAN [58], BSGAN [59], BSPVGAN [60], FgGAN [61],
BSlsGAN [62], and RMS-GAN [63]. BScGAN is based
on conditional generative adversarial network (cGAN) that
consists of two networks: generator and discriminator. BS-
GAN [59] and BSPVGAN [60] are based on Bayesian
GANs. They use median filter for background modeling and
Bayesian GANs for pixel classification. The use of Bayesian
GANs can address the issues of sudden and slow illumination
changes, non-stationary background, and ghost. In addition,
BSPVGAN [60] exploits parallel vision to improve results
in complex scenes. In [64], [65], adversarial learning is
proposed to generate dynamic background information in an
unsupervised manner.

However, the performance of all the aforementioned deep
learning-based moving object detection methods comes at
a high computational cost and a slow inference speed due
to complex network structures and intense convolution op-
erations. To reduce the amount of calculation, our previous
work [57] proposed to use 2D separable CNN which splits
the standard 2D convolution into a depthwise convolution
and a pointwise convolution. It dramatically increases the
inference speed and maintains high detection accuracy. How-
ever, this 2D separable CNN-based network does not exploit
the temporal information in the video input.

In this work, we extend the 2D separable CNN to a 3D
separable CNN, which reduces the computational complexity
compared to standard 3D CNN. Although some existing
works [76]–[79] adopt 3D separable CNN to extract high-
dimensional features, none of them applied it to the problem
of moving object detection. For example, the 3D separable
CNN in [76] is for hand-gesture recognition, in which the
last two layers of the network are fully connected layers that
output class labels. The 3D separable CNN in [77] is used
for two tasks: 3D object classification and reconstruction.
Neither task utilizes temporal data, hence no temporal convo-
lution is involved. The 3D separable CNN in [78] is to predict
interactive force between two objects, hence its network
output is a scalar representing the predicted force value. This
problem essentially is a regression problem. Besides, the way
that the 3D convolution is separated in [78], [79] is different
from our proposed method. It first conducts channel-wise
2D convolution for each independent frame and channel,
then conducts joint temporal-channel-wise convolution. In
contrast, our proposed 3D separable CNN performs spatial-
temporal convolution first, then performs pointwise convolu-
tion along the channel direction.

Another factor that limits the inference speed is the input-
output relationship. The input-output relationship of existing
moving object detection networks has two types: (1) single-
input single-output (SISO), which is widely exploited in 2D
CNNs such as FgSegNet_S [38] and 2D separable CNN [57];
and (2) multi-input single-output (MISO) which can be found
in 3D CNNs such as 3D-CNN-BGS [53], 3DAtrous [54], and
DMFC3D [51]. The disadvantage of SISO and MISO is that
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they result in a slow inference speed because only one frame
output is predicted in every forward pass. Recently, the X-
Net [80] adopts a two-input two-output network structure,
which takes two adjacent video frames as the network input
and generates the corresponding two binary masks. Although
it can track temporal changes, the network structure is inflex-
ible and the temporal correlation it utilizes is limited. In this
work, we propose a multi-input multi-output (MIMO) strat-
egy, which can take multiple input frames and output multiple
frames of binary masks in each sample. It explores temporal
correlations on a larger time span and significantly increases
the inference speed when embedded in 3D separable CNN.

Another issue for supervised methods is the generalization
capability of the trained models on completely unseen videos.
Several moving object detection models were designed and
evaluated over completely unseen videos, such as BMN-
BSN [47], BSUV-Net [48], BSUV-Net 2.0 [49], BSUV-
Net+SemBGS [48], ChangeDet [50], and 3DCD [56]. Be-
sides, semi-supervised networks were also designed to be
extended to unseen videos. For example, GraphBGS [66] and
GraphBGS-TV [67] are based on the reconstruction of graph
signals and semi-supervised learning algorithm, MSK [68] is
based on a combination of offline and online learning strate-
gies, and HEGNet [71] combines propagation-based and
matching-based methods for semi-supervised video moving
object detection.

In this paper, we devise a new lightweight 3D sep-
arable CNN specifically for moving object detection in
computation-resource-limited and delay-sensitive scenarios.
It has an efficient end-to-end encoder-decoder structure with
a multi-input multi-output (MIMO) strategy, named as the
“3DS_MM”. The proposed 3DS_MM does not require ex-
plicit background modeling. We evaluate the model over CD-
net2014 [75] dataset in an SDE framework with other state-
of-the-art models, and we also assess the generalization ca-
pability of the model over CDnet2014 and DAVIS2016 [81]
datasets in SIE setups over completely unseen videos.

The proposed 3DS_MM significantly increases the infer-
ence speed, reduces the trainable parameters, computational
complexity and model size, meanwhile achieving the highest
detection accuracy in SDE setup and maintaining a competi-
tive detection accuracy in SIE setup.

III. 3D SEPARABLE CONVOLUTION
In this section, we elaborate on the rationale of the 3D
separable convolution operation, which is the building block
of our proposed 3DS_MM. In the following sections, we use
the default data format “NLHWC” in Tensorflow to represent
data, which denotes the batch size N , the temporal length L,
the height of the imageH , the width of the imageW , and the
number of channels C.

A. 2D CONVOLUTION VS. 3D CONVOLUTION
As shown in Fig. 1(a) [82], an ordinary 2D convolution takes
a 3D tensor of size H ×W × Ci as the input, where H and
W are the height and width of feature maps, and Ci is the
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FIGURE 1. Illustration of (a) the 2D convolution with 3D input and (b) the
3D convolution with 4D input.

number of input channels. In this case, the filter is a 3D filter
in a shape of K ×K ×Ci moving in two directions (y, x) to
calculate a 2D convolution. The output is a 2D matrix of size
Ho × Wo. If the filter number is Co, the output shape will
be Ho ×Wo × Co. The mathematical expression of such 2D
convolution is given by

Out[h,w] =

K−1∑
j=0

K−1∑
i=0

Ci−1∑
c=0

f [j, i, c]× In[h− j, w − i, c]

(1)

where In represents the 3D input to be convolved with the
3D filter f to result in a 2D output feature map Out. Here, h,
w and c are the height, width, and channel coordinates of the
3D input, while j, i and c are those of the 3D filter.

However, for video signal the 2D convolution in Fig. 1(a)
does not leverage the temporal information among adjacent
frames. 3D convolution addresses this issue using 4D convo-
lutional filters with 3D convolution operation, as illustrated
in Fig. 1(b). In a 3D convolution, the “input” becomes Ci

channels of 3D tensors of size L × H ×W , where L is the
temporal length (i.e. the number of successive video frames).
Hence, the input is 4D and is of size L × H ×W × Ci. A
4D convolutional filter of size K ×K ×K × Ci moves in 3
directions (z, y, x) to calculate convolutions, where z, y, and
x align with the temporal length, height, and width axes of
the 4D input. The output shape is Lo×Ho×Wo. If the filter
number is Co, the output shape will be Lo ×Ho ×Wo ×Co.
The mathematical expression of the 3D convolution with a
4D input is given by

Out[l, h, w] =

∑K−1
k=0

∑K−1
j=0

∑K−1
i=0

∑Ci−1
c=0

f [k, j, i, c]× In[l − k, h− j, w − i, c]
(2)

where In represents the 4D input to be convolved with the 4D
filter f to result in a 3D output Out. Here, l, h, w, and c are
the temporal length, height, width, and channel coordinates
of the 4D input, while k, j, i and c are those of the 4D filter.
If the size of the filter is K ×K ×K × Ci, then the indices
k, j, i range from 0 to K − 1, and c ranges from 0 to Ci− 1.

4 VOLUME , 2021



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3123975, IEEE Access

B. Hou et al.: A Fast Lightweight 3D Separable CNN with MIMO for Moving Object Detection

Kernel size: 𝐾 × 𝐾 × 𝐾 × 𝐶𝑖

Step 1. Depthwise convolution

Multiplications: 𝐾 × 𝐾 × 𝐾 × 𝐿𝑜 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑖 + 𝐶𝑖 × 𝐿𝑜 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑜

Multiplications: 𝐾 × 𝐾 × 𝐾 × 𝐶𝑖 × 𝐿𝑜 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑜

𝐾 × 𝐾 × 𝐾 × 𝐶𝑖

𝐾 × 𝐾 × 𝐾 × 1 1 × 1 × 1 × 𝐶𝑖

𝐻

Kernel size: 𝐾 × 𝐾 × 𝐾 × 1
Multiplications: 𝐾 × 𝐾 × 𝐾 × 1 × 𝐿𝑜 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑖

Kernel size: 1 × 1 × 1 × 𝐶𝑖
Multiplications: 1 × 1 × 1 × 𝐶𝑖 × 𝐿𝑜 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑜

𝑊

𝐻

𝑊

𝑊𝑜

𝐻𝑜

𝑊𝑜

𝐻𝑜𝑊𝑜

𝐻𝑜 𝐻𝑜

𝑊𝑜

(a)

(b)

𝐿
𝐿𝑜

𝐿𝑜
𝐿𝑜

𝐿
𝐿𝑜

Step 2. Pointwise convolution

FIGURE 2. Illustration of (a) the standard 3D convolution and (b) the 3D
separable convolution. Red arrows point to effective directions of the
convolution calculation of the 3D filters.

The ability to leverage the temporal context improves mov-
ing object detection accuracy. However, 3D CNN is rarely
used in practice because it suffers from a high computational
cost due to the increased amount of computation used by 3D
convolutions, especially when the dataset scale goes larger
and the neural network model goes deeper. Thus, in order
to make use of the temporal features, a low-complexity 3D
CNN must be developed.

B. 3D CONVOLUTION VS. 3D SEPARABLE
CONVOLUTION
2D separable convolution splits traditional 2D convolution
into a depthwise convolution and a pointwise convolution,
which drastically reduces computational complexity [57],
[83]–[85].

In order to utilize temporal features in video data, the
idea of separable convolution can be applied to the standard
3D convolution. As shown in Fig. 2 (a), in the standard 3D
convolution, the 4D input of size L × H × W × Ci, is
convolved with Co filters of size K ×K ×K ×Ci, resulting
in a 4D output of size Lo × Ho × Wo × Co. The filters
calculate the 3D convolution by moving in the directions of
length, height, and width as shown by the red arrows. The
computational complexity of such standard 3D convolution
is K ×K ×K × Ci × Lo ×Ho ×Wo × Co.

To simplify the 3D convolution, we decompose it into a
3D depthwise convolution and a 1D pointwise convolution.
As shown in Fig. 2 (b) Step 1, the 3D depthwise convolution
adopts Ci independent filters of size K ×K ×K × 1 to per-
form a 3D convolution on each input channel. This procedure
is described in (3). The required multiplications of such 3D
depthwise convolution isK×K×K×1×Lo×Ho×Wo×Ci.

Out[l, h, w, c] =
K−1∑
k=0

K−1∑
j=0

K−1∑
i=0

f [k, j, i, c]× In[l − k, h− j,

w − i, c], c = 1, 2, ..., Ci. (3)

Afterwards, the output of Fig. 2 (b) Step 1 is used as the
input of Fig. 2 (b) Step 2, where the pointwise convolution
adopts a filter of size 1 × 1 × 1 × Ci, performs a linear
projection along the channel axis as shown by the red arrow,
and outputs a 3D tensor of sizeLo×Ho×Wo. This procedure
is described in (4). Using Co such filters outputs Co 3D
tensors. The required multiplications of such 1D pointwise
convolution is 1× 1× 1× Ci × Lo ×Ho ×Wo × Co.

Out[l, h, w] =

Ci−1∑
s=0

f [s]× In[l, h, w, c− s]. (4)

The combination of the 3D depthwise convolution and the
1D pointwise convolution, called 3D separable convolution,
achieves a reduction in computational complexity of

ratio =
3D separable convolution

3D convolution

=

K ×K ×K × Lo ×Ho ×Wo × Ci
+ Ci × Lo ×Ho ×Wo × Co

K ×K ×K × Ci × Lo ×Ho ×Wo × Co

=
1

Co
+

1

K3.

(5)

With K = 3 and a large Co, the computational complexity
can be reduced by roughly 27 times compared to the standard
3D convolution.

This work adopts such 3D separable convolution in a mov-
ing object detection network for the first time. It substantially
reduces the amount of computation, meanwhile extracting
temporal features in the video sequence.

IV. PROPOSED 3DS_MM NETWORK
The proposed deep moving object detection network shown
in Fig. 3 is based on two major designs: (1) the encoder-
decoder-based 3D separable CNN and (2) the multi-input
multi-output (MIMO) strategy. This section describes the
proposed approach in detail.

A. ENCODER-DECODER-BASED 3D SEPARABLE CNN
As shown in Fig. 3, the proposed network is an encoder-
decoder-based CNN utilizing the 3D separable convolution
as described in Section III. The network involves six blocks
in the encoder network and three blocks in the decoder
network. These block numbers are selected to provide a good
trade-off between the inference speed and the detection ac-
curacy empirically. Table 1 shows the details of the network
and the shape of the input and output in each layer.

1) The Encoder Network
For each training sample, the input to the encoder network
is a set of video frames in a 4D shape of 9 × H × W × 3
without background frame needed, where 9 is the number
of video frames, H and W are the height and width of the
video frames, and 3 is the RGB color channels. In Fig. 3,
t0, t1, t2, t3, t4... represent different time slots. In the first
step, the standard 3D convolution described in Fig. 2(a) is
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FIGURE 3. The architecture of the proposed 3DS_MM.

TABLE 1. The proposed network configuration. The encoder consists of
blocks 0 to 5, and the decoder consists of blocks 6 to 8.

Layer Type / Stride (Filter Shape) × Filters Output Shape 

                           

Conv3D / s=[1,1,1]

Conv3D dw / s=[1,2,2]

Conv3D pw / s=[1,1,1]

Conv3D dw / s=[2,1,1]

Conv3D pw / s=[1,1,1]

Conv3D dw / s=[1,2,2]

Conv3D pw / s=[1,1,1]

Conv3D dw / s=[2,1,1]

Conv3D pw / s=[1,1,1]

Conv3D dw / s=[2,1,1]

Conv3D pw / s=[1,1,1]

Conv3DTrans pw/s=[3,2,2]

Conv3D dw/s=[1,1,1]

Conv3DTrans pw/s=[1,2,2]

Conv3D dw / s=[1,1,1]

Conv3DTrans pw/s=[1,1,1]

Sigmoid Activation                           

block 0

D
ec

o
d

er

block 6

block 7

block 8

E
n

co
d

er

block 1

block 2

block 3

block 4

block 5

9 × 𝐻 ×𝑊 × 32

9 × 𝐻 ×𝑊 × 3

9 ×
𝐻

2
×
𝑊

2
× 32

9 ×
𝐻

2
×
𝑊

2
× 64

5 ×
𝐻

2
×
𝑊

2
× 64

5 ×
𝐻

2
×
𝑊

2
× 128

5 ×
𝐻

4
×
𝑊

4
× 128

5 ×
𝐻

4
×
𝑊

4
× 128

3 ×
𝐻

4
×
𝑊

4
× 128

3 ×
𝐻

4
×
𝑊

4
× 256

2 ×
𝐻

4
×
𝑊

4
× 256

2 ×
𝐻

4
×
𝑊

4
× 512

6 ×
𝐻

2
×
𝑊

2
× 256

6 ×
𝐻

2
×
𝑊

2
× 256

6 × 𝐻 ×𝑊 × 64

6 × 𝐻 ×𝑊 × 64

6 × 𝐻 ×𝑊 × 1

6 × 𝐻 ×𝑊 × 1

(3 × 3 × 3 × 3) × 32

(3 × 3 × 3 × 1) × 32

(1 × 1 × 1 × 32) × 64

(3 × 3 × 3 × 1) × 64

(3 × 3 × 3 × 1) × 128

(1 × 1 × 1 × 64) × 128

(1 × 1 × 1 × 128) × 128

(3 × 3 × 3 × 1) × 128

(1 × 1 × 1 × 128) × 256

(3 × 3 × 3 × 1) × 256

(1 × 1 × 1 × 256) × 512

(1 × 1 × 1 × 512) × 256

(3 × 3 × 3 × 1) × 256

(3 × 3 × 3 × 1) × 64

(1 × 1 × 1 × 256) × 64

(1 × 1 × 1 × 64) × 1

The output shape is in data format “LHWC”, where L is the temporal
length, H is the height, W is the width, C is the number of channels, dw
represents “depthwise convolution”, pw represents “pointwise convolution”,
and s represents the strides in temporal length, height, and width.

adopted with 32 filters of size 3× 3× 3× 3 to calculate the
convolution on nine input frames. The input video frames are
transformed to 32 feature maps in a shape of 9×H×W ×32

at the output. In the following blocks, each of the output
feature maps of each layer is convolved with an independent
filter of size 3×3×3×1 with strides [1, 2, 2] (in the direction
of temporal length, height, width) for depthwise convolution,
and then convolved with Co filters of size 1×1×1×Ci with
strides [1, 1, 1] for pointwise convolution.

2) The Decoder Network
The output of the encoder network is fed to the decoder
network for decoding to produce the binary masks of the
moving objects.

Each layer of the decoder network adopts a transposed
convolution, which spatially upsamples the encoded features
and finally generates the binary masks at the same resolution
as the input video frames.

The standard transposed convolution is split into a 1D
pointwise transposed convolution and a 3D depthwise trans-
posed convolution. These operations are defined similarly
to the 1D pointwise convolution and the 3D depthwise
convolution in the encoder network. In block 6 shown in
Table 1, the encoder output of size 2 × H

4 ×
W
4 × 512 is

converted to a tensor of size 6 × H
2 ×

W
2 × 256 using the

1D pointwise transposed convolution with 256 filters of size
1 × 1 × 1 × 512. By setting strides to be [3, 2, 2] for the
temporal length, height and width in the pointwise transposed
convolution, the feature maps are up-scaled by 3 times from 2
to 6 in the temporal length and enlarged by 2 times in height
and width. Then followed by a 3D depthwise transposed
convolution with 256 filters of size 3× 3× 3× 1 and strides
[1, 1, 1], the feature maps are projected to a tensor of size
6×H

2 ×
W
2 ×256 at the output of block 6. Block 7 is similarly

defined. In the final block, the feature maps are projected to
a 4D output of size 6×H ×W × 1, and a sigmoid activation
function is appended to generate the probability masks for 6
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FIGURE 4. Left: Difference between Single-Input Single-Output (SISO),
Multi-Input Single-Output (MISO), and Multi-Input Multi-Output (MIMO).
Right: The proposed MIMO strategy used in the inference process.

successive frames. A threshold of 0.5 is applied to convert the
probability masks to binary masks that indicate the detected
moving objects.

B. MIMO STRATEGY

Fig. 4 illustrates our proposed MIMO strategy and how it
is different from SISO and MISO. The temporal-dimension
L of a 4D input or output of size L × H × W × C is
redefined as the number of input frames Li and the number
of output masks Lo. By applying different padding and stride
values in the convolutions in the neural network, different
number of output masks Lo can be predicted. In our study,
we set Li as 9 and Lo as 6. As shown in Fig. 4 (right), in
the inference process, two groups of 9 input frames with 3
frames overlapped can output two successive groups of 6
binary masks.

We also analyze how computational complexity can be
reduced from MISO to this MIMO scheme. Let us consider
our proposed network in Table 1. With the proposed MIMO
scheme, the output layer in block 8 is of size Lo × Ho ×
Wo × (Co = 1). Since block 8 mainly requires a pointwise
convolution, the multiplications required to generate such
output layer is 1×1×1×Ci×Lo×Ho×Wo× (Co = 1) =
Ci × Lo × Ho ×Wo. Denote the total multiplications from
block 0 to block 7 as M0−7, then the overall complexity of
generating Lo binary masks is

M0−7 + Ci × Lo ×Ho ×Wo. (6)

With the same network structure, if we adopt a MISO
scheme, then the output layer is of size (Lo = 1) × Ho ×
Wo × (Co = 1). The multiplications involved in block 8
to generate such output layer is 1 × 1 × 1 × Ci × (Lo =
1) ×Ho ×Wo × (Co = 1) = Ci × Ho ×Wo. To generate
Lo output binary masks, the overall complexity is

(M0−7+Ci×Ho×Wo)×Lo =M0−7×Lo+Ci×Lo×Ho×Wo.
(7)

Therefore, to output the same number of binary masks, MISO
requires (7)− (6) = (Lo − 1)×M0−7 more multiplications
than MIMO.

V. TRAINING AND EVALUATION OF THE PROPOSED
MODEL
To analyze how the proposed model performs, we conducted
three experiments illustrated in Table 2: (1) video-optimized
SDE setup on CDnet2014 dataset, (2) category-wise SIE
setup on CDnet2014 dataset, and (3) complete-wise SIE
setup on DAVIS2016 dataset. In SDE [50], frames in training
and test sets were from the same video, whereas, in SIE [50],
completely unseen videos were used for testing. Further, in
category-wise SIE, the training and testing were done per
category over CDnet2014, whereas, in complete-wise SIE,
training and testing were done over the complete DAVIS2016
dataset.

All the experiments were carried out on an Intel Xeon with
an 8-core 3GHz CPU and an Nvidia Titan RTX 24G GPU.
The following sections present the details of the training and
evaluation processes and performance evaluation metrics.

A. VIDEO-OPTIMIZED SDE SETUP ON CDNET2014
DATASET
The CDnet2014 dataset [75] was used in the experiment. It
contains 11 video categories: baseline, badWeather, shadow,
and so on. Each category has four to six videos, resulting in
a total of 53 videos (e.g., the baseline category has sequences
highway, office, pedestrians, and PETS2006). A video con-
tains 900 to 7, 000 frames. The spatial resolution of the video
frames varies from 240 × 320 to 576 × 720 pixels. In our
experiments, we excluded the PTZ (pan–tilt–zoom) category
since the camera has excessive motion.

We trained deep learning-based methods DeepBS [40],
MSFgNet [41], VGG-PSL-CRF [42], BSPVGAN [60],
RMS-GAN [63], MSCNN+Cascade [34], MsEDNet [37],
FgSegNet_S [38], FgSegNet_M [38], FgSegNet_v2 [39],
2D_Separable CNN [57] and our proposed 3DS_MM in the
same video-optimized SDE setup, in which a specific model
was trained for each video.

From each video, we selected the first 50% of frames as
the training set and the last 50% of frames as the test set.
The SISO-based networks and the proposed MIMO-based
3DS_MM were using exactly the same frames for training.
Suppose that one video contained 100 frames, then for the
SISO-based networks, the first 50 frames t0∼t49 were used
for training, and the last 50 frames t50∼t99 were used for
testing. For our proposed 3DS_MM, a 9-frame window slid
over the same first 50% of frames, such as t0∼t8, t1∼t9,
t2∼t10,. . . ,t41∼t49 to form the training set if the stride was
1, and t50∼t99 frames were for testing. In this way, all
the deep-learning-based models were using the same frames
for training. The only difference was that for the proposed
network, the first 50% of frames were repeatedly utilized
through the sliding operation. The traditional unsupervised
methods WeSamBE [15], SemanticBGS [16], PAWCS [18],
and SuBSENSE [20] were also tested on the same last 50%
frames for performance comparison.

We used the RMSprop optimizer with binary cross-entropy
loss function and trained each model for 30 epochs with batch
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TABLE 2. Different data division schemes of scene dependent evaluation (SDE) and scene independent evaluation (SIE).

size 1. The learning rate was initialized at 1 × 10−3 and
was reduced by a factor of 10 if the validation loss did not
decrease for 5 successive epochs.

B. CATEGORY-WISE SIE SETUP ON CDNET2014
DATASET
In order to evaluate the generalization capability of the pro-
posed 3DS_MM, we also run experiments for the SIE setup.
Compared to SDE, in SIE the training and test sets contain
a completely different set of videos. In the category-wise
SIE setup, the training and evaluation were conducted per
category. A leave-one-video-out (LOVO) strategy originally
raised in [50] was applied to divide videos in each category
into training and test sets for CDnet2014 dataset. For exam-
ple, the baseline category contains four videos, then three
videos (highway, office, PETS2006) were used for training,
and the 4th video (pedestrians) was for testing. This SIE setup
was carried out on seven categories, so for each method in
comparison, seven models were trained totally from scratch.

The traditional unsupervised methods WeSamBE [15],
PAWCS [18], and SuBSENSE [20] were compared in the
category-wise SIE setup. We also compared our proposed
3DS_MM with the other DNN-based networks such as
BMN-BSN [47], BSUV-Net [48], BSUV-Net 2.0 [49], and
ChangeDet [50] which were demonstrated to have great
performance on unseen videos.

We used the RMSprop optimizer with binary cross-entropy
loss function and trained the model for 30 epochs with batch
size 5. The learning rate was initialized at 1 × 10−3 and
was reduced by a factor of 10 if the validation loss did not
decrease for five successive epochs.

C. COMPLETE-WISE SIE SETUP ON DAVIS2016
DATASET
We also conducted an experiment in complete-wise SIE
setup on DAVIS2016 dataset. Different from the category-
wise setup on CDnet2014, the complete-wise setup on
DAVIS2016 refers to the training and evaluation on the whole
dataset. In our experiment, 30 videos in DAVIS2016 dataset

were used in training, and 10 completely unseen videos were
used for testing. For each method in comparison, only one
unified model was trained from scratch without using any
pre-trained model data.

Semi-supervised deep learning-based methods such as
MSK [68], CTN [69], SIAMMASK [70], PLM [73],
and HEGNet [71], as well as FgSegNet_S [38], FgSeg-
Net_M [38], FgSegNet_v2 [39], and 2D_Separable
CNN [57] were trained and tested in the same SIE setup
as our proposed 3DS_MM. We used the same training
configuration parameters (optimizer, loss function, epochs,
batch size, learning rate, etc.) as those in Section V-B.

D. EVALUATION METRICS
1) Efficiency
To evaluate the efficiency of our proposed model, the in-
ference speed is measured in frames per second (fps), the
model size is measured in megabytes (MB), the number
of trainable parameters is measured in millions (M), and
the computational complexity is measured in floating point
operations (FLOPs).

2) Detection Accuracy
To measure the detection accuracy, we adopt four met-
rics: the region-based F-measure, the structure measure
(S-measure) [86], the enhanced alignment measure (E-
measure) [87], and the mean absolution error (MAE) [88].

The F-measure is defined as:

F -measure =
2× precision × recall

precision + recall
(8)

where precision = TP
TP+FP , recall = TP

TP+FN , given the
true positive (TP), false positive (FP), true negative (TN), and
false negative (FN).

The S-measure [86] combines the region-aware structural
similarity Sr and object-aware structural similarity So, which
is more sensitive to structures in scenes:

S-measure = α× So + (1− α)× Sr , (9)
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where α = 0.5 is the balance parameter.
The E-measure is recently proposed [87] based on cogni-

tive vision studies and combines local pixel values with the
image-level mean value in one term, jointly capturing image-
level statistics and local pixel matching information.

We also evaluate the MAE [88] between the predicted
output and the binary ground-truth mask as:

MAE =
1

N

N∑
i=1

|Predi −GTi| , (10)

where Predi is the predicted value of the i-th pixel, GTi is
the ground-truth binary label of the i-th pixel, and N is the
total number of pixels.

VI. EXPERIMENTAL RESULTS AND DISCUSSION
A. ABLATION STUDY
We first investigated the influence of different components
of our proposed 3DS_MM through ablation experiments. In
order to quantify the effect of two components “3D separable
CNN” and “MIMO” in 3DS_MM, we conducted four experi-
ments over 10 categories of CDnet2014 dataset in SDE setup.
The results are shown in Table 3. We began with the standard
3D CNN and a MISO strategy, namely “3D CNN + MISO”. It
has an F-measure of 0.9532, a very low inference speed of 26
fps, approximately 9.13 M trainable parameters, and a com-
putational complexity of 693.31 GFLOPs, which generates 1
output binary mask. To generate 6 output masks, the GFLOPs
need to be multiplied by 6 (×6). We then replaced the
standard 3D CNN by the 3D separable CNN, while the MISO
strategy was retained. For a fair comparison, the 3D CNN and
the 3D separable CNN structures adopted the same number
of network layers, and their intermediate layers have the same
output sizes. The resultant “3D separable CNN + MISO”
method has a slightly reduced F-measure, but the inference
speed increased from 26 fps to 31 fps. More importantly,
the parameters and FLOPs were drastically reduced, due to
the separable convolution operations. On the other hand, we
retained the standard 3D CNN but replaced MISO by MIMO.
In particular, we kept the front part of the network the same
and only modify the last layer to output 6 binary masks
instead of a single mask. The resultant method “3D CNN +
MIMO” significantly increased the inference speed (144 fps)
compared to “3D CNN + MISO”.

Finally, the proposed “3D separable CNN + MIMO”
method has a superior inference speed (154 fps) due to the
MIMO strategy, as well as the fewest trainable parameters
(∼0.36 M) and FLOPs (∼28.43 G) due to 3D separable con-
volutions. The above results have justified the effectiveness
of our proposed model design.

B. OBJECTIVE PERFORMANCE EVALUATION
1) Objective Results in Video-Optimized SDE Setup on
CDnet2014
The accuracy comparison of various methods in SDE setup
in each video category is shown in Table 4. Each row lists

TABLE 3. Ablation study of the proposed 3DS_MM.

Methods
Accuracy  ↑ 

(F-measure)

Inference Speed ↑  

(fps)

# Param ↓

(M)

FLOPs↓

(G)

3D CNN + MISO 0.9532 26 ~9.13 ~693.31 (×6)

3D separable CNN + MISO 0.9521 31 ~0.36 ~28.40 (×6)

3D CNN + MIMO 0.9522 144 ~9.13 ~693.97

3D separable CNN + MIMO 0.9517 154 ~0.36 ~28.43

#Param: Number of trainable parameters; M: millions; FLOPs: floating
point operations, G: gigaflops; (×6): six times the FLOPs in order to
generate the same number of output masks as the ‘MIMO’ strategy.

the inference speed, F-measure, S-measure, E-measure and
MAE values for a specific method, each column lists the al-
gorithm category, learning type (supervised or unsupervised
learning), input-output relationship (SISO, MISO or MIMO),
inference speed, GPU type, and F-measure values averaged
on test frames from a certain video category, while the last
four columns show the average F-measure, S-measure, E-
measure and MAE values across all video categories. The
first four classical methods are traditional non-deep learning-
based methods. These traditional models are tested on the
same last 50% of frames as the other compared models. In the
subsequent rows, the results of deep learning-based models,
including our proposed model are obtained by training and
testing in exactly the same SDE setup as introduced in Sec-
tion V-A. In Table 4, we highlight the best value in each col-
umn in bold. We observe that our proposed 3DS_MM model
achieves the highest inference speed at 154 fps, and performs
best in BDW-badWeather, DBG-dynamicBackground, IOM-
intermittentObjectMotion, LFR-lowFramerate, and Turbu-
lance categories in F-measure. It improved the average F-
measure by 1.1% and 1.4% compared to methods with the
second and third highest average F-measure values in Table 4.
It also offers the highest average S-measure, E-measure, and
the lowest average MAE values among all methods.

2) Objective Results in Category-Wise SIE Setup on
CDnet2014
Table 5 lists the comparison results in category-wise SIE
setup. Each column lists the inference speed and accuracy
metrics values calculated on the unseen video being left
out from each category for testing in the LOVO strategy.
The models FgSegNet_S [38], FgSegNet_M [38], FgSeg-
Net_v2 [39], BMN-BSN [47], BSUV-Net [48], BSUV-Net
2.0 [49], and ChangeDet [50] were trained and evaluated in
the same SIE setup introduced in Section V-B as our pro-
posed 3DS_MM. Our proposed 3DS_MM (with an inference
speed at 154 fps, an F-measure of 0.8499, an S-measure of
0.8632, an E-measure of 0.9445, and an MAE of 0.0545)
outperforms all the other listed methods in inference speed,
while maintaining high detection accuracy by outperform-
ing FgSegNet_S, FgSegNet_M, FgSegNet_v2, BMN-BSN,
BSUV-Net, and BSUV-Net 2.0 by 26.6%, 34.8%, 24.9%,
7.2%, 2.7%, and 3.9% in F-measure, respectively. It achieves
similar superiority in terms of S-measure, E-measure and
MAE as well. Although ChangeDet [50] offers relatively
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TABLE 4. Comparative F-measure, S-measure, E-measure and MAE performance in video-optimized SDE setup on CDnet2014 dataset.

S-measure ↑ E-measure ↑ MAE ↓

BDW BSL CJT DBG IOM NVD LFR SHD THM TBL Avg Avg Avg Avg

WeSamBE [15] 2 CPU i5 0.8530 0.9293 0.7830 0.7274 0.7256 0.5801 0.6532 0.8492 0.7768 0.7667 0.7644 0.7835 0.8536 0.1423

SemanticBGS [16] 7 Titan 0.8190 0.9488 0.8332 0.9326 0.7742 0.4886 0.7818 0.9050 0.8025 0.6851 0.7971 0.8094 0.8935 0.1002

PAWCS [18] 27 CPU i5 0.8072 0.9277 0.7996 0.8772 0.7628 0.4024 0.6518 0.8719 0.8130 0.6350 0.7549 0.7644 0.8478 0.1453

SuBSENSE [20] 30 CPU i5 0.8539 0.9383 0.8006 0.8011 0.6433 0.5471 0.6375 0.8797 0.7977 0.7722 0.7671 0.7790 0.8598 0.1394

VGG-PSL-CRF [42] 4.9 Titan 0.8869 0.9474 0.9276 0.7190 0.7405 0.7398 0.6105 0.8890 0.8352 0.9137 0.8210 0.8398 0.9157 0.0801

DeepBS [40] 10 Titan 0.8221 0.9460 0.8844 0.8593 0.5962 0.5777 0.5932 0.9116 0.7389 0.8385 0.7768 0.7956 0.8712 0.1184

MSFgNet [41] 83.8 Titan 0.8424 0.9091 0.8167 0.8348 0.7669 0.7973 0.8352 0.9151 0.7822 0.8572 0.8357 0.8545 0.9266 0.0613

BSPVGAN[60] 10 Titan 0.9564 0.9717 0.9747 0.9683 0.9230 0.8873 0.8448 0.9732 0.9570 0.9240 0.9380 0.9466 0.9856 0.0123

RMS-GAN [63] 50 Titan 0.9490 0.9658 0.9624 0.9612 0.9342 0.8812 0.9333 0.9262 0.9510 0.9434 0.9407 0.9490 0.9825 0.0155

MsEDNet [37] 13.6 Titan 0.8975 0.9248 0.9027 0.8902 0.8051 - - 0.9002 0.8621 - 0.8832 0.8897 0.9766 0.0204

MSCNN+Cascade [34] 50 Titan 0.9351 0.9666 0.9612 0.9492 0.8358 0.8837 0.8312 0.9227 0.8764 0.9038 0.9066 0.9190 0.9568 0.0413

FgSegNet_M [38] 69 Titan 0.9307 0.9528 0.9403 0.9136 0.8943 0.8830 0.8897 0.9153 0.9160 0.7964 0.9032 0.9166 0.9789 0.0224

FgSegNet_S [38] 82 Titan 0.9331 0.9608 0.9407 0.9233 0.9045 0.8871 0.9123 0.9197 0.9152 0.7980 0.9095 0.9236 0.9758 0.0241

FgSegNet_v2 [39] 89 Titan 0.9396 0.9680 0.9475 0.9143 0.8985 0.8736 0.9247 0.9152 0.9196 0.8179 0.9119 0.9184 0.9876 0.0112

2D_Separable CNN [57] 149 Titan 0.9165 0.9552 0.9401 0.9324 0.9352 0.8459 0.9255 0.9030 0.9067 0.8936 0.9154 0.9304 0.9858 0.0123

Proposed 3DS_MM 154 Titan 0.9571 0.9704 0.9417 0.9686 0.9637 0.8848 0.9736 0.9432 0.9516 0.9621 0.9517 0.9687 0.9945 0.0067

Method

GANs  (SV, SISO)

(SV, MISO)

F-measure ↑

Traditional Methods (unSV)

Deep CNNs  (SV, MISO)

Accuracy

GPU

Inference 

Speed ↑ 

(fps) 

Algorithms

(Learning type, Input-Output)

3D Separable (SV, MIMO)

2D Separable (SV, SISO)

Multiscale CNNs (SV, MISO)

Deep CNNs  (SV, SISO)

unSV: unsupervised learning, SV: supervised learning, SISO: single-input single-output, MISO: multi-input single-output, MIMO: multi-input multi-
output. The best value in each column is highlighted in bold. ↑ Larger value of the metric denotes better performance. ↓ Smaller value of the metric
denotes better performance.

TABLE 5. Comparative F-measure, S-measure, E-measure and MAE performance in category-wise SIE setup for unseen videos on CDnet2014 dataset.

S-measure ↑ E-measure ↑ MAE ↓

blizzard-

BDW

pedestrians-

BSL

boats- 

DBG

turnpike5fps-

LFR

winterStreet-

NVD

busStation-

SHD

corridor-

THM
Avg Avg Avg Avg

WeSamBE [15] unSV 2 CPU i5 0.8584 0.9569 0.6401 0.9130 0.5900 0.8628 0.8944 0.8165 0.8198 0.9112 0.0723

PAWCS [18] unSV 27 CPU i5 0.6612 0.9511 0.8820 0.9072 0.4610 0.8583 0.6489 0.7671 0.7746 0.8003 0.1789

SuBSENSE [20] unSV 30 CPU i5 0.8501 0.9500 0.6893 0.8531 0.4469 0.8577 0.9129 0.7943 0.7990 0.8432 0.1432

BSUV-Net [48] SV, MISO 6 Titan 0.8195 0.9765 0.9004 0.6802 0.6100 0.9398 0.8350 0.8231 0.8342 0.9109 0.0691

BSUV-Net 2.0 [49] SV, MISO 29 Titan 0.8310 0.9630 0.8750 0.7077 0.6170 0.8012 0.8743 0.8100 0.8301 0.9032 0.0910

BMN-BSN [47] SV, MISO 48 Titan 0.8401 0.9523 0.6400 0.6893 0.6122 0.9211 0.7933 0.7783 0.7894 0.8712 0.1213

ChangeDet [50] SV, MISO 58.8 Titan 0.9484 0.9490 0.9182 0.8492 0.7699 0.7801 0.8350 0.8643 0.8798 0.9484 0.0466

FgSegNet_M [38] SV, MISO 69 Titan 0.5511 0.7209 0.6857 0.2233 0.4200 0.6051 0.3104 0.5024 0.5232 0.6043 0.3812

FgSegNet_S [38] SV, SISO 82 Titan 0.7412 0.6478 0.4045 0.5767 0.4500 0.5244 0.7435 0.5840 0.5987 0.6543 0.3778

FgSegNet_v2 [39] SV, SISO 89 Titan 0.6990 0.6310 0.6189 0.5290 0.4300 0.5415 0.7590 0.6012 0.6281 0.7223 0.2712

Proposed 3DS_MM SV, MIMO 154 Titan 0.8942 0.9165 0.7998 0.9147 0.7856 0.7978 0.8409 0.8499 0.8632 0.9445 0.0545

Accuracy

Method
Learning Type,

Input-Output

Inference 

Speed ↑ 

(fps) 

GPU
F-measure ↑

unSV: unsupervised learning, SV: supervised learning, SISO: single-input single-output, MISO: multi-input single-output, MIMO: multi-input multi-
output. The best value in each column is highlighted in bold. The second best average accuracy values are also highlighted. ↑ Larger value of the
metric denotes better performance. ↓ Smaller value of the metric denotes better performance.)

TABLE 6. Comparative F-measure, S-measure, E-measure and MAE performance in complete-wise SIE setup for unseen videos on DAVIS2016 dataset.

S-measure ↑ E-measure ↑ MAE ↓

camel car-

roundab

out

car-

shadow

cows goat horsejump-

high

kite-

surf

paragliding-

launch

parkour soapbox
Avg Avg Avg Avg

MSK [68] semi-SV, MISO 0.5 Titan 0.7350 0.9260 0.9480 0.8120 0.8140 0.8510 0.4380 0.2290 0.8740 0.8420 0.7469 0.7598 0.8068 0.1900

CTN [69] semi-SV, MISO 4.5 Titan 0.7250 0.7750 0.8670 0.7750 0.7460 0.8660 0.4600 0.2270 0.8820 0.7440 0.7067 0.7123 0.7855 0.2102

PLM [73] semi-SV, MISO 9.5 Titan 0.6130 0.7140 0.7310 0.7410 0.6940 0.7860 0.4560 0.1810 0.8120 0.6300 0.6358 0.6436 0.6975 0.2890

HEGNet [71] semi-SV, MISO 12.5 Titan 0.7490 0.7892 0.7798 0.7792 0.7312 0.7402 0.6843 0.7392 0.8029 0.6500 0.7304 0.7489 0.7837 0.2110

SIAMMASK [70] semi-SV, MISO 78 Titan 0.7480 0.8720 0.9780 0.7720 0.7210 0.6880 0.3260 0.1910 0.8290 0.5470 0.6672 0.6703 0.7182 0.2701

FgSegNet_M [38] SV, MISO 69 Titan 0.6047 0.4892 0.8704 0.5620 0.4009 0.6199 0.6308 0.8639 0.5190 0.5835 0.6144 0.6265 0.7034 0.2803

FgSegNet_S [38] SV, SISO 82 Titan 0.6163 0.5194 0.8940 0.5356 0.4063 0.6273 0.6904 0.8738 0.5345 0.5902 0.6288 0.6398 0.7134 0.2511

FgSegNet_v2 [39] SV, SISO 89 Titan 0.6201 0.5120 0.8744 0.5309 0.4509 0.5940 0.6820 0.8729 0.5029 0.6194 0.6260 0.6379 0.7201 0.2710

2D_Separable CNN [57] SV, SISO 149 Titan 0.5235 0.5286 0.8304 0.5387 0.4701 0.3815 0.4729 0.8163 0.4818 0.6209 0.5665 0.5934 0.6235 0.3723

Proposed 3DS_MM SV, MIMO 154 Titan 0.7495 0.7103 0.7849 0.7039 0.7290 0.6103 0.7012 0.8749 0.7693 0.6835 0.7317 0.7492 0.8024 0.2089

Accuracy

Method
Learning Type,

Input-Output

Inference 

Speed ↑ 

(fps) 

GPU
F-measure ↑

semi-SV: semi-supervised learning, SV: supervised learning. SISO: single-input single-output, MISO: multi-input single-output, MIMO: multi-input
multi-output. The best value in each column is highlighted in bold. The second best average accuracy values are also highlighted. ↑ Larger value of
the metric denotes better performance. ↓ Smaller value of the metric denotes better performance.)

better detection accuracy than our model, the inference speed
of our model is 2.6 times that of ChangeDet.

3) Objective Results in Complete-Wise SIE Setup on
DAVIS2016
All the models listed in Table 6 were trained and evalu-
ated in the same complete-wise SIE setup as described in
Section V-C. It is more challenging for a model to per-
form well in such SIE setup on DAVIS2016 dataset, be-
cause (1) the complete-wise SIE setup mixes 30 different

kinds of videos from the real-world together for training,
and (2) the content complexity of DAVIS2016 dataset is
high. We compared our proposed model 3DS_MM (with
an inference speed at 154 fps and an average F-measure
of 0.7317, S-measure of 0.7492, E-measure of 0.8024 and
MAE of 0.2089 over 10 test videos) to the state-of-the-
art semi-supervised deep learning-based models MSK [68],
CTN [69], SIAMMASK [70], HEGNet [71], and PLM [73].
It turns out that our proposed model is superior over these
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TABLE 7. The comparison between our proposed method and other deep learning-based methods for speed, trainable parameters, computational
complexity, model size, and accuracy metrics values. The Table is sorted in ascending order of the inference speed.

F ↑ S↑ E ↑ MAE ↓ F ↑ S↑ E ↑ MAE ↓ F ↑ S↑ E ↑ MAE ↓

MSK [68] 0.5 - - - - - - - - - - - 0.7469 0.7598 0.8068 0.1900

CTN [69] 4.5 - - - - - - - - - - - 0.7067 0.7123 0.7855 0.2102

VGG-PSL-CRF [42] 4.9 ~  48.72 ~3270 G 127 0.8210 0.8398 0.9157 0.0801 - - - - - - - -

BSUV-Net [48] 6.0 - - 116 - - - - 0.8231 0.8342 0.9109 0.0691 - - - -

PLM [73] 9.5 - - - - - - - - - - - 0.6358 0.6436 0.6975 0.2890

DeepBS [40] 10.0 ~ 3.15 ~1750 G 28.46 0.7768 0.7956 0.8712 0.1184 - - - - - - - -

BSPVGAN [60] 10.0 - - - 0.9380 0.9466 0.9856 0.0123 - - - - - - - -

HEGNet [71] 12.5 - - - - - - - - - - - 0.7304 0.7489 0.7837 0.2110

MsEDNet [37] 13.6 ~ 23.29 ~1120 G 95 0.8832 0.8897 0.9766 0.0204 - - - - - - - -

BSUV-Net 2.0 [49] 29.0 ~15.90 ~540 G 110 - - - - 0.8100 0.8301 0.9032 0.0910 - - - -

BMN-BSN [47] 48.0 - - - - - - - 0.7783 0.7894 0.8712 0.1213 - - - -

MSCNN+Cascade [34] 50.0 ~ 10.30 ~318 G 76.35 0.9066 0.9190 0.9568 0.0413 - - - - - - - -

RMS-GAN [63] 50.0 - - - 0.9407 0.9490 0.9825 0.0155 - - - - - - - -

ChangeDet [50] 58.8 ~ 0.13 ~262 G 1.59 - - - - 0.8643 0.8798 0.9484 0.0466 - - - -

FgSegNet_M [38] 69.0 ~ 15.83 ~220 G 60.40 0.9032 0.9166 0.9789 0.0224 0.5024 0.5232 0.6043 0.3812 0.6144 0.6265 0.7034 0.2803

SIAMMASK [70] 78.0 - - - - - - - - - - - 0.6672 0.6703 0.7182 0.2701

 FgSegNet_S [38] 82.0 ~ 8.16 ~199 G 31.20 0.9095 0.9236 0.9758 0.0241 0.5840 0.5987 0.6543 0.3778 0.6288 0.6398 0.7134 0.2511

MSFgNet [41] 83.8 ~ 0.29 ~193 G 1.48 0.8357 0.8545 0.9266 0.0613 - - - - - - - -

FgSegNet_v2 [39] 89.0 ~ 7.49 ~181 G 29.80 0.9119 0.9184 0.9876 0.0112 0.6012 0.6281 0.7223 0.2712 0.6260 0.6379 0.7201 0.2710

Proposed 3DS_MM 154.0 ~ 0.36 ~28.43 G 1.45 0.9517 0.9687 0.9945 0.0067 0.8499 0.8632 0.9445 0.0545 0.7317 0.7492 0.8024 0.2089

SIE 

(complete-wise)

 SIE 

(category-wise)Method
Inference Speed ↑  

(fps) 

# Param ↓

(M)

Model Size ↓

(MB)

FLOPs ↓ 

(G)

SDE

#Param: Number of trainable parameters; M: millions; G: gigaflops; F: F-measure; S: S-measure; E: E-measure; MAE: mean absolute error. The
best value in each column is highlighted in bold. The second best accuracy values are also highlighted. ↑ Larger value of the metric denotes better
performance. ↓ Smaller value of the metric denotes better performance.

18

(a) F-measure vs. Inference speed (b) S-measure vs. Inference speed

(c) E-measure vs. Inference speed (d) MAE vs. Inference speed

FIGURE 5. Accuracy vs. inference speed (in fps) on an NVIDIA Titan GPU of our proposed model and other compared models in the three experiments
(in SDE, category-wise SIE, and complete-wise SIE setup).

models in the inference speed. Besides, our model improved
the F-measure by 2.5%, 9.6% and 6.5% compared to CTN,

PLM and SIAMMASK, respectively, and its F-measure is
on par with HEGNet. Although MSK offers 1.5% higher F-
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measure than ours, its inference speed is extremely low. Our
proposed model also outperforms the supervised learning-
based models FgSegNet_S [38], FgSegNet_M [38], FgSeg-
Net_v2 [39], and 2D_Separable CNN [57] in F-measure
by 10.3%, 11.7%, 10.6%, and 16.5%, respectively. Our
proposed method demonstrates a similar superiority in S-
measure, E-measure and MAE values. Although there are
other models in DAVIS Challenge website with higher de-
tection accuracy than our proposed model, those models are
far less efficient and their inference speed is too slow to be
applied in delay-sensitive scenarios.

C. ACCURACY, SPEED, MEMORY, AND
COMPUTATIONAL COMPLEXITY ANALYSIS
Fig. 5 displays the detection accuracy metrics in F-measure,
S-measure, E-measure and MAE versus the inference speed
of all the compared models in the SDE setup, category-
wise SIE setup, and complete-wise SIE setup. Since we
aim at delay-sensitive applications, we expect our proposed
3DS_MM to offer overwhelmingly high inference speed,
and a superior detection accuracy among models with high
inference speeds. In Fig. 5, we observe that our proposed
3DS_MM surpasses all the other schemes in inference speed
in all three experiment setups. In terms of the F-measure, S-
measure, E-measure and MAE, in the SDE setup our method
is the best among all models, while in both the category-wise
and complete-wise SIE setups our method is the best among
all models with an inference speed above 65 fps.

In Table 7, we summarize the overall performance in-
cluding inference speed, trainable parameters, computational
complexity, model size, and detection accuracy of our pro-
posed 3DS_MM and other methods. The table is sorted
in an ascending order of the inference speed. It is evident
that the proposed 3DS_MM outperforms all the other listed
methods with the highest inference speed at 154 fps, which is
increased by 1.7 times and 1.8 times respectively, compared
to the second and third fastest methods in Table 7. The com-
putational complexity and the model size of our proposed
method are 28.43 GFLOPs and 1.45 MB, smaller than all the
other models in Table 7, due to our proposed 3D separable
convolution.

In terms of detection accuracy (F-measure, S-measure, E-
measure, and MAE), our proposed model outperforms all
other models in SDE setup. In category-wise SIE setup, our
proposed method offers the second best accuracy scores.
Although it is slightly worse than changeDet [50], its infer-
ence speed (154 fps) is 2.6 times that of ChangeDet (58.8
fps). In complete-wise SIE setup, although our model offers
slightly worse accuracy scores than MSK [68], it offers
overwhelming superiority in terms of inference speed. The
extremely low inference speed of MSK (0.5 fps) hinders the
practical use of this model for delay-sensitive applications.

The number of trainable parameters of our proposed model
(∼0.36 million) is much less than most of the models in
comparison. The reason that ChangeDet [50] (∼0.13 million)
and MSFgNet [41] (∼0.29 million) have fewer trainable

parameters than ours is because they use 2D filters and
they are shallower networks with fewer convolutional layers,
while our proposed 3DS_MM uses 3D filter and a deeper
network. Nevertheless, the inference speeds of ChangeDet
and MSFgNet are much slower than ours since they are
both MISO networks. In contrast, our 3DS_MM is able to
significantly increase the inference speed due to the proposed
MIMO strategy and 3D separable convolution.

D. SUBJECTIVE PERFORMANCE EVALUATION
In addition to objective performance, we also provide visual
quality comparison as shown in Fig. 61, Fig. 7, and Fig. 8.

1) Subjective Results in Video-Optimized SDE setup on
CDnet2014
In Fig. 6, we randomly picked a sample test frame from cate-
gories BSL-baseline, BDW-badWeather, NVD-nightVideos,
and IOM-intermittentObjectMotion. We observe that (1) the
proposed 3DS_MM provides more details and clearer edges
in the detected foreground objects, such as the car mirrors
in “BSL” and “BDW”, and (2) the proposed method detects
more contiguous objects such as the bus in “NVD” and
the walking man in “IOM”. In contrast, the detected binary
masks of other methods in comparison have either blurry
edges or missing parts.

2) Subjective Results in Category-Wise SIE setup on
CDnet2014
In Fig. 7, we randomly select a sample frame from each of
the four categories (BSL-baseline, BDW-badWeather, LFR-
lowFramerate, SHD-shadow) of CDnet2014 test results to
show the visual quality of the models in Category-Wise
SIE setup. Our proposed model has a better generalization
capability compared to other models. It shows that our pro-
posed model detects clearer shapes of the persons in BSL
and SHD, and detects more details of person legs in SHD.
The results of other methods, however, are either noisy,
blurry, or have missing parts. In addition, the proposed model
performs better in BDW and LFR categories with clear and
correct shapes, while other models detect excessive or non-
contiguous content.

3) Subjective Results in Complete-Wise SIE setup on
DAVIS2016
In Fig. 8, we randomly select four videos (camel, horsejump-
high, paragliding-launch, and kite-surf) from the results
of DAVIS2016. Our proposed model detects the shapes
of objects consistently well for all four videos, while the
detection results of 2D_Separable [57], FgSegNet_S [38],
FgSegNet_v2 [39], and SIAMMASK [70] are either noisy
or incomplete. Besides, the detection results of CTN [69],
MSK [68], and PLM [73] for the kite-surf video are less
accurate than the proposed model.

1There are some non-ROI (non-region-of-interest) areas shown as gray
color regions in the ground truth images, which were not considered in the
training.
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Input                   Ground Truth              Proposed       2D_Separable[57]      FgSegNet_S[38]     FgSegNet-v2[39]       BSPVGAN[60]   MSCNN+Cascade[34]    DeepBS[40]        SuBSENSE[20]        

BSL
(highway)

BDW
(snowFall)

NVD
(streetCorner

AtNight)

IOM
(sofa)

FIGURE 6. Visual comparison of sample results from CDnet2014 dataset in video-optimized SDE setup. BSL: baseline, BDW: badWeather, NVD:
nightVideo, IOM: intermittentObjectMotion.

Input                   Ground Truth          Proposed        FgSegNet_S[38]     FgSegNet_M[38]     FgSegNet_v2[39]       BSUV-Net[48]      WeSamBE [15]        PAWCS [18]         SuBSENSE[20]        

BSL

(pedestrians)

BDW
(blizzard)

LFR
(turnpike5fps)

SHD

(busStation)

FIGURE 7. Visual comparison of unseen sample results from CDnet2014 dataset in category-wise SIE setup. BSL: baseline, BDW: badWeather, LFR:
lowFramerate, SHD: shadow.

camel

horsejump-

high

paragliding-

launch

kite-surf

Input               Ground Truth          Proposed      2D_Separable[57]  FgSegNet_S[38]  FgSegNet_v2[39]        CTN [69]        SIAMMASK [70]        MSK [68]             PLM [73]                   

FIGURE 8. Visual comparison of unseen sample results from DAVIS2016 dataset in complete-wise SIE setup.

VII. CONCLUSION

In this paper, we propose the 3DS_MM model for mov-
ing object detection. Our model is designed specifically for
memory- and computation-resource-limited environments
and for delay-sensitive tasks. Our model utilizes spatial-
temporal information in the video data via 3D convolution.
The proposed 3D depthwise and pointwise convolutions
with the MIMO strategy effectively reduce computational
complexity and significantly enhance the inference speed.
In addition, the 3D separable convolution leads to very
few trainable parameters and a small model size. Finally,

the defined SDE and SIE experiments demonstrate that our
proposed model achieves superior detection accuracy among
all compared models with high inference speeds suitable for
low-latency vision applications.

In terms of future study, we plan to use data-augmentation
technique to improve the robustness of the proposed model
and to further improve the model generalization capability
on unseen videos. We will also investigate the potential of
feature fusion to improve moving object detection accuracy
without reducing the efficiency. Further, we plan to extend
the work to semantic segmentation tasks.
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