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Abstract—Compressed sensing (CS) is a signal processing
framework that effectively recovers a signal from a small number
of samples. Traditional compressed sensing algorithms, such as
basis pursuit (BP) and orthogonal matching pursuit (OMP)
have several drawbacks, such as low reconstruction performance
at small compressed sensing rates and high time complexity.
Recently, researchers focus on deep learning to get compressed
sensing matrix and reconstruction operations collectively. How-
ever, they failed to consider sparsity in their neural networks
to compressed sensing recovery; thus, the reconstruction perfor-
mances are still unsatisfied. In this paper, we use 2D-discrete
cosine transform and 2D-discrete wavelet transform to impose
sparsity of recovered signals to deep learning in video frame
compressed sensing. We find the reconstruction performance is
significantly enhanced.

Index Terms—compressed sensing, block-based compressed
sensing, deep learning, discrete cosine transform, discrete wavelet
transform, fully-connected neural network

I. INTRODUCTION

Compressed sensing (CS) is a mathematical framework
defining the conditions and tools to recover a sparse signal
from a small number of linear projections [1]. The measuring
instrument acquires the signal in the domain of the linear pro-
jection in the compressed sensing structure, and the complete
signal is reconstructed using convex optimization methods. CS
has a variety of applications including image acquisition [2],
magnetic resonance imaging [3], and image compression [4].

This paper’s primary contributions are: (1) For the first
moment it introduces the use of discrete cosine transformed
images and discrete wavelet transformed images in deep
learning for compressed sensing tasks. (2) By combining
discrete cosine transform or discrete wavelet transform with
deep learning, we propose a neural network architecture to
achieve stronger reconstruction quality of compressed sensed
video frames.

The rest of the paper is organized as follows. In section
2, we briefly review the concept of compressed sensing,
the motivation of block-based image compression, and the
state-of-the-art deep learning method for compressed sensing.
In section 3, we introduce the proposed method. Section 4
presents the experiment results on the six datasets that support
our algorithm developments. Finally, we conclude the paper
and discuss future research directions.

II. COMPRESSED SENSING BACKGROUND

A. Compressed Sensing

Compressed sensing theory shows that an S-sparse signal
x ∈ RN is able to be compressed into a measurement

vector y ∈ RM by an over-complete matrix A ∈ RM×N,
M � N [1] and can be recovered if A satisfies the restricted
isometry property (RIP). However, in images, pixels are not
sparse. Thus, to recover x from the measurement y, a certain
transform (such as the discrete cosine transform or the discrete
wavelet transform) is needed, so that x can be sparsely
represented in the transform domain, that is, x = Ψs, where s
is the sparse transform coefficient vector [5]. The recovery of x
is equivalent to solving the l1-norm based convex optimization
problem [6]:

minimize
s

‖s‖1
subject to y = ΦΨs.

(1)

While basis pursuit can be efficiently implemented with linear
programming to solve the above minimization problem, its
computational complexity is often high, hence people resort
to greedy techniques such as orthogonal matching pursuit [7]
to reduce the computational complexity.

B. Compressed Sensing with Deep Learning

Deep neural networks offer another way to perform com-
pressive image sensing [8]. The benefit of such a strategy
is that during training, the sensing matrix and nonlinear
reconstruction operators can be jointly optimized, thus out-
performing other existing CS algorithms for compressed-
sensed images in terms of reconstruction accuracy and less
reconstruction time. However, such reconstruction remains
unsatisfying, particularly at very small sampling rates. At a
large compressive sampling rate, the reconstruction ability
tends to reach the upper limit due to the overfitting issue.
Furthermore, this neural network is for images, not for videos.
[9] develops a 6-layer convolutional neural network (32 or
64 feature maps in four convolutional layers) to reconstruct
images from compressive sensing image signals. [10] uses a
generative neural network to reconstruct compressive sensing
MRI images. The neural network architecture consists of an
8-layer convolutional neural network (128 feature maps in
each convolutional layer) with a ResNet for the generator
and a 7-layer convolutional neural network (feature maps
double from 8 to 64 in the first four layers and keep 64 until
the last convolutional layer) for the discriminator. However,
deep convolutional neural networks incur high computational
complexity during training and the hyperparameters (e.g.,
depths and dimensions of feature maps) must be carefully
tuned for specific datasets. Meanwhile, current deep learning
strategies for compressive sensing seldom take the sparsity of
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original signals into consideration as traditional compressive
sensing methods do.

C. Block-based Compressed Sensing

In block-based compressed sensing (BCS), an image is split
into small blocks of size B × B and compressed with a
measuring matrix ΦB [11]. Assume that Xi ∈ RB×B is an
image block and the vectorized block is xi ∈ RB2

, where i is
the block index. The corresponding CS measurement vector
is yi = ΦBxi, where ΦB ∈ Rλ×B2

and λ =
⌊
RB2

⌋
(R is the

sensing rate, R � 1). The use of BCS instead of sampling
the whole image has several advantages:

1) Due to the small block size, the CS measurement vectors
are conveniently collected and used;

2) The encoder does not have to wait until the whole image
is compressed, instead, it can send the CS measurement
vector of each block to the decoder after it is acquired;

3) Due to the small size of ΦB , the memory is saved.

III. THE PROPOSED APPROACH

A. Fully-connected Neural Network

In this paper, we propose a deep learning framework. The
reason to choose this neural network is that it has a very
simple structure, high computational efficiency, and it outputs
high-quality reconstructed video frames. The architecture of
the neural network (Fig. 1) consists of:

1) an input layer with B2 nodes (frame block receptor);
2) a forward transform layer with B2 nodes (forward

transform operation);
3) a flatten layer with B2 nodes (vectorization);
4) a compressed sensing layer with B2R nodes, R � 1

(linear compressed sensing);
5) an expansion layer with B2T nodes, each followed by

the ReLU activation function, where T > 1 is the
expansion factor;

6) a reconstruction layer of B2 nodes (shape controller);
7) a reshape layer of B2 nodes (vector to matrix conver-

sion);
8) an inverse transform layer of B2 nodes (inverse trans-

form operation).

B. 2D-Discrete Cosine Transform and 2D-Discrete Wavelet
Transform

We use discrete cosine transform (DCT) or discrete wavelet
transform (DWT) to perform transformation on our image
blocks to project them on to the sparse domain.

We use 2D-DCT and 2D-DWT. We denote the B × B
transform matrix as C. For 2D-transform, we use CXiC

T

to transform image block Xi to the frequency-domain sparse
signal Si and vectorize it as si. For 2D-inverse-transform, we
use CTSiC to transform Si to the original image block Xi and
denote the corresponding block vector as xi. Our algorithm
jointly optimizes the sensing matrix ΦB and the non-linear
reconstruction operator:

ŝi = W2(ReLU(W1(ΦBsi))). (2)

which is parameterized by coefficients matrices W1 and W2

with an activation function ReLU.
We minimize the mean-squared-error (MSE) loss function

in the training process:

minimize
ΦB ,W1,W2

E{‖ŝi − si‖2}. (3)

IV. EXPERIMENT RESULTS

This section provides experimental details and the perfor-
mance evaluation of the proposed neural network. We use
the Foreman and the Container datasets (SIF format). Each
dataset has 300 frames and each frame is of dimension
352 × 288 × 1. To simplify our experiment, we only use the
luminance component of each dataset. We divide our images
into B×B blocks. In our experiment, we set B = 16. Instead
of using the AdaGrad optimization algorithm [8], as we find
in practice, that has the local minima problem as the learning
rates vanish, we use the Adam optimization algorithm in the
training process to achieve fast convergence speed and to
overcome the local minima issue [13]. In our experiments,
we find 150 epochs suitable for our training process in most
cases.

We evaluate the reconstruction performance by the peak
signal-to-noise ratios (PSNRs) with 3 expansion factor values
(T = 8, 10, and 12) in FCN+DCT, FCN+DWT, and FCN at 7
compressed sensing ratios (R = 0.10, 0.15, 0.20, 0.25, 0.30,
0.35, and 0.40). PSNR is calculated through mean-squared-
error (MSE) by (4). The MSE is defined as E{‖x̂i−xi‖}. The
maximum pixel intensity value (MAX) is 255. We compare
the reconstruction PSNR values and the total processing time
of our proposed compressed sensing deep learning algorithms
with those of the traditional algorithms, such as basis pursuit
(BP), orthogonal matching pursuit (OMP) and total variation
minimization [12]. Deep learning algorithms are implemented
with Python by using Keras 2.3.0 and accelerated by NVIDIA
RTX 2080 Ti GPU. Orthogonal matching pursuit, basis pursuit
and total-variation minimization are implemented with Matlab.
Gaussian sensing matrices with random entries of 0 mean and
standard deviation

√
M are used to compress the original im-

age blocks (M is the length of the CS measurement vectors) in
orthogonal matching pursuit and basis pursuit. Random partial
Walsh Hadamard matrix is used to compress the original image
block in total-variation minimization.

PSNR = 10· log10 MAX2

MSE (dB). (4)

TABLE I and TABLE II show that our proposed FCN+DCT
and FCN+DWT perform better than the pure FCN and tra-
ditional compressed sensing recovery algorithms such as the
basis pursuit (BP), orthogonal matching pursuit(OMP), and
total-variation minimization (TV) in terms of the reconstruc-
tion quality at 7 sensing rates. Further, FCN+DCT outperforms
FCN+DWT. For each testing dataset, we calculate the average
reconstruction PSNR values of each deep learning method
across testing frames of each expansion factor value. For
the Foreman dataset, the proposed FCN+DWT improves the

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 01,2020 at 18:35:37 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Fully-connected neural network for compressed sensing.

TABLE I: The average reconstruction PSNR [dB] versus the sensing rate (R =M/N ) of the Foreman dataset.
Method R = 0.10 R = 0.15 R = 0.20 R = 0.25 R = 0.30 R = 0.35 R = 0.40

FCN+DCT (T = 8) 31.63 32.87 33.87 34.65 35.65 36.34 37.12
FCN+DCT (T = 10) 31.55 32.85 34.90 35.52 36.13 36.13 37.33
FCN+DCT (T = 12) 31.67 32.80 34.01 34.97 35.70 36.44 37.31
FCN+DWT (T = 8) 31.50 32.84 33.79 34.72 35.53 36.10 36.67

FCN+DWT (T = 10) 31.49 32.85 33.84 34.61 35.27 36.06 37.11
FCN+DWT (T = 12) 31.57 32.84 33.81 34.66 35.49 36.42 36.49

FCN (T = 8) 31.22 32.56 33.28 34.18 35.15 35.62 36.65
FCN (T = 10) 31.29 32.66 33.35 34.22 35.13 35.75 35.81
FCN (T = 12) 31.00 32.39 33.53 34.24 35.02 35.79 36.00

OMP 19.08 20.64 21.85 23.67 24.07 25.11 25.78
BP 20.08 21.60 23.94 25.28 26.55 27.74 28.73
TV 23.91 25.43 27.56 28.83 30.25 31.40 32.24

TABLE II: The average reconstruction PSNR [dB] versus the sensing rate (R =M/N ) of the Container dataset.
Method R = 0.10 R = 0.15 R = 0.20 R = 0.25 R = 0.30 R = 0.35 R = 0.40

FCN+DCT (T = 8) 34.15 35.43 36.56 37.58 38.20 38.87 39.73
FCN+DCT (T = 10) 34.20 35.73 36.31 37.23 38.33 39.15 40.27
FCN+DCT (T = 12) 34.48 35.64 36.91 37.14 38.44 39.30 39.64
FCN+DWT (T = 8) 33.81 35.50 36.33 36.86 37.10 38.06 38.82

FCN+DWT (T = 10) 33.92 35.31 36.20 37.05 37.86 37.95 38.83
FCN+DWT (T = 12) 34.06 35.29 36.47 37.38 37.51 38.15 38.29

FCN (T = 8) 33.70 35.02 35.71 36.24 36.90 37.94 38.78
FCN (T = 10) 33.63 34.86 35.36 36.61 36.83 37.94 38.00
FCN (T = 12) 34.00 34.74 34.94 36.74 36.75 37.57 38.03

OMP 17.47 18.32 19.22 20.18 20.98 21.77 22.49
BP 18.78 20.19 21.56 22.73 23.73 24.66 25.56
TV 22.33 23.21 24.44 25.47 26.49 27.44 28.28

PSNR of FCN by 0.35 dB for low sensing rate (R = 0.10)
and 0.60 dB for high sensing rate (R = 0.40). FCN+DCT
further improves these results by 0.10 dB and 0.50 dB. For the
Container dataset, the FCN+DWT improves the PSNR of FCN
by 0.15 dB and 0.38 dB for low sensing rate (R = 0.10) and
high sensing rate (R = 0.40), respectively. The FCN+DCT
further improves these results by 0.35 dB and 1.24 dB. We
also observe that neural network for compressed sensing
signal recovery performs better in the Container dataset than
in the Foreman dataset. It is because the motion in the
Foreman dataset is faster than that in the Container dataset.
Figs. 2-3 demonstrate the visual quality improvements by the
FCN+DCT and the FCN+DWT compared to the FCN on two
testing images at two sensing rates. In Fig.4, we analyze the
validation loss in 150 epochs. We find the FCN+DCT and

the FCN+DWT smooth the validation loss curves compared
to the validation loss curve of the pure FCN. In particular,
the FCN+DCT smoothes the validation loss curve better as
compared to the FCN+DWT. We also use another four CIF
format datasets (Monitor Hall, News, Akiyo and Silent) to
train and test the neural network models. Each dataset has 300
frames and each frame has a dimension size of 352×288×1.
We use the same method as the one used for the Foreman and
Container datasets to train neural network models except that
we set the training epochs for Akiyo to be 25 instead of 150
because overtraining issues occur after 25 epochs of training
[14]. The results are shown in TABLE III, indicating that the
proposed FCN+DCT achieves higher quality for the recovered
video frames compared to FCN+DWT and FCN. TABLE
IV shows the total processing time (DCT/DWT transform
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Fig. 2: Foreman for M/N = 0.4. Left to right: original; FCN+DCT (T = 10), PSNR = 38.44 dB; FCN+DWT (T = 10),
PSNR = 38.21 dB; FCN (T = 10), PSNR = 36.73 dB; OMP, PSNR = 26.50 dB; BP, PSNR = 29.15 dB; TV, PSNR = 32.90
dB.

Fig. 3: Container for M/N = 0.2. Left to right: original; FCN+DCT (T = 10), PSNR = 36.97 dB; FCN+DWT (T = 10),
PSNR = 36.90 dB; FCN (T = 10), PSNR = 35.83 dB; OMP, PSNR =19.47 dB; BP, PSNR = 21.48 dB; TV, PSNR = 24.41
dB.

TABLE III: The Average reconstruction PSNR [dB] versus the sensing rate (R =M/N ) of other datasets by neural networks
(T = 10).

Dataset R = 0.10 R = 0.25 R = 0.40
FCN+DCT FCN+DWT FCN FCN+DCT FCN+DWT FCN FCN+DCT FCN+DWT FCN

Monitor Hall 33.94 33.76 33.50 38.26 37.89 37.71 41.82 41.19 41.09
News 32.02 32.01 31.57 36.22 35.77 34.74 40.02 38.97 38.90
Akiyo 34.41 34.25 33.61 38.07 37.10 36.83 40.04 39.21 39.11
Silent 34.59 34.17 33.78 38.59 37.93 36.39 41.28 40.52 38.38

Fig. 4: Validation loss of Container for M/N = 0.25 (T =
10).

time, compressed sensing time, recovery time and DCT/DWT
inverse-transform time) for 90 testing images. The DCT/DWT
slightly increases the processing time compared to the pure
FCN, but the overall methods are approximately 542 times
faster than total-variation minimization.

V. CONCLUSIONS

This paper proposed a deep learning framework that utilizes
the sparse property of images to enhance the reconstruction

TABLE IV: Total processing time at R = 0.20 for 90 testing
images (352 ×288).

Method Time [seconds]
FCN+DCT (T = 8) 4.90

FCN+DCT (T = 10) 5.12
FCN+DCT (T = 12) 5.38
FCN+DWT (T = 8) 4.80

FCN+DWT (T = 10) 5.01
FCN+DWT (T = 12) 5.24

FCN (T = 8) 4.13
FCN (T = 10) 4.53
FCN (T = 12) 4.99

OMP 642.53
BP 543.86
TV 2717.13

quality of compressed-sensed video frames through a fully-
connected neural network. This paper demonstrated that sparse
transforms such as DCT and DWT, which are widely used in
traditional compressed sensing recovery algorithms, can also
be applied to neural networks to recover compressed-sensed
video frames. However, performance improvement differs in
2D-DCT and 2D-DWT, where 2D-DCT outperforms 2D-
DWT in the fully-connected neural network reconstruction
of compressed-sensed images. The future research will focus
on the mathematical explanations of sparse transform in deep
learning for compressed sensing recovery and use new activa-
tion functions to move the study forward [15].
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