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Abstract—Compressed sensing is an effective solution for 

signal acquisition and signal reconstruction at a much lower rate 

than the Nyquist rate. Traditional methods, such as orthogonal 

matching pursuit and basis pursuit, for image compressed sensing 

reconstruction have unsatisfying reconstruction quality and long 

reconstruction time. Researchers now focus on neural network 

and deep learning methods for the better reconstruction of 

compressed-sensed signals at a very low sampling rate and a fast 

speed. However, current neural network approaches for image 

compressed sensing do not consider the similarities between 

images or within images, or the types of image blocks; thus, 

performing poorly in images with complex contents. In this paper, 

we develop a novel neural network framework that utilizes the 

similarities between image blocks through Gaussian-mixture 

models without recording the similarity information to achieve 

better reconstruction quality than the state-of-the-art neural 

network methods for block-level image compressed sensing. 

Keywords—block-based compressed sensing, compressed 

sensing, discrete cosine transform, Gaussian-mixture model, logistic 

regression classifier, neural network. 

I. INTRODUCTION  

The Shannon-Nyquist sampling theory indicates that to 
recover a signal accurately, a signal needs to be sampled at least 
twice the highest frequency present in the signals [1], resulting 
in large samples with redundant information. Compressed 
sensing  is proposed to achieve sampling and compression steps 
at one time [2]. Traditional methods, such as orthogonal 
matching pursuits [3] and basis pursuit [4], for image 
compressed sensing reconstruction requires huge reconstruction 
time, and bring low qualities of reconstructed images. 
Researchers now focus on deep learning methods to achieve 
high reconstruction quality of images at a fast speed [5]. 
However, deep learning for image compressed sensing has not 
yet considered the similarities between images or the contents 
within images; thus, poorly performing as the images become 
complex. One way to know the types of images or image blocks 
is through the Gaussian-mixture model [6]. However, if we 
tailor neural networks to different classes of images or image 
blocks, we need to record the class label information to inform 
the decoder, which requires extra bits. In this work, we develop 
a neural network architecture utilizing the class labels of video 
frame blocks for image compressed sensing without recording 
the class label information. Our contributions are:  

• We use Gaussian-mixture models to classify video frame 
blocks for optimizing our end-to-end neural network 
architectures with different clusters.  

• We use a logistic regression classifier to provide class 
labels of compressed-sensed video frame block vectors 
for decoder without recording extra clustering 
information.  

• We design a hashmap data structure to accelerate 
compressed sensing and reconstruction speed 
significantly.  

II. BACKGROUND 

A. Compressed Sensing  

Compressed sensing theory shows that an S-sparse signal � ∈ ℝ� is able to be compressed into a sampled vector � ∈ ℝ� 
by a matrix � ∈ ℝ�×� ,  	 ≪ �  and can be recovered if � 
satisfies the restricted isometry property (RIP) of the order of 2k 
[7], that is: 

 �1 − ����||�||��� ≤ ||��||  ≤ �1 + ����||�||��� , (1) 

where ��� is the isometry constant. However, in images, pixels 
are not sparse, and some transforms are needed to represent � in 
sparse frequency �  through � =  �� . The recovery of x is 
equivalent to solving the �� -norm based convex optimization 
problem:  

 �� =  !"#$%&||�||� s.t.  � = '��. (2) 

B. Compressed Sensing with Neural Network 

The basic idea of neural network for image compressed 
sensing is to train a measurement matrix �  with the inverse 
transform matrix ( collaboratively, so that, �� = (���� . A 
method has been proposed in [5] where the researchers use n 

fully-connected neural network layers with weights (���, (���, 
…, (�)� of these layers, and the non-linear activation function, 
Relu, in a layer with more nodes for reconstruction. It achieved 
better reconstruction results than traditional methods and with a 
fast speed. One most recent research [8] applied the sparse 
transform matrix, such as discrete cosine transform (DCT) 
matrix and the inverse sparse transform matrix to video frames 
such that the neural network utilizes the properties of 
compressed sensing, that is, �  must be sparse so to achieve 
satisfying results. However, the models are relatively simple and 
cannot perform well if images become complex. Both [5] and 
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[8] are performed at block-level. Block-level compressed 
sensing brings several benefits: (1) it saves the space of 
transform matrices given that transform matrices are applied to 
image blocks with small magnitudes rather than the whole 
images with hundreds of times of magnitudes; (2) it solves the 
issues when training data are not sufficient as splitting the whole 
images to blocks increases the number of data points. Some 
other methods applied to whole images use deep convolutional 
neural networks, which typically have a few convolutional 
layers with hundreds of feature maps in each convolutional layer 
[9], [10]. These approaches require large amount of training 
data, and the complicated tuning of network hyperparameters.  

III. OUR APPROACH 

We design a class-specific neural network framework 

(Fig.1). A trained Gaussian-mixture model predicts the blocks 

labels and sends the blocks to their belonged encoders to get the 

compressive-sensed vectors. A logistic regression classifier 

predicts the labels of compressive-sensed vectors and sends 

these vectors to their belonged decoders to complete the block 

reconstruction. 

A. Gaussian-mixture Model for Block Classification  

The Gaussian-mixture model (GMM) assumes that each 

data point from class k is generated by a mixture of * 

multivariate Gaussian distributions with the model parameter + 

of a weight ,�, a mean vector -� and a covariance matrix .� 

for each cluster / = 1: *  [11]. The GMM has constraints of ∑ ,�2�3� = 1 and 0 ≤ ,� ≤ 1. The probability density of the $56 vectorized frame block �7 under the class k is expressed as: 

8��7|-�, .�� = �
��9�:/�|.<|:/� exp @− �

� ��7 −
-��AΣ�C���7 − -��D. 

      

     
(3) 

The linear super-position of Gaussians is:  

E��F|+� = G ,H8��F|-�, .��I

H3J
.    

(4) 

We denote the predicted class label of �F as L7. We compute L7 
using the maximum a posteriori probability (MAP) estimate 

[11]: 

 L7 =  !"# M� �N" E ��7|L7 = /, +� +
�N" E �L7 = /|+�. 

(5) 

 

B. Class-Specific Neural Network  for Block Compressed 

Sensing 

We denote the sampling ratio as O �O = 	/��. The main 

parts of the proposed class-specific neural network consist of: 

1. an input layer with P� nodes; 

2. a flatten layer; 

3. a DCT transform layer with P�  nodes using fixed 

parameters, that is, Kronecker product form of sparse 

transform matrix Q = R ⊗ RA applied to block 

vectors, where R  is the discrete cosine transform 

(DCT) matrix applied to block matrices [12];  

4. a trainable compressed sensing layer with P�O nodes, O ≪ 1; 

5. an expansion layer with P�T nodes, each followed by 

Relu activation function, T ≫ 1; 

6. a trainable reconstruction layer with P� nodes;  

7. an inverse DCT transform layer with P� nodes using 

fixed parameters, QV; 

8. a reshape layer to convert predicted block vectors to 

predicted block matrices.  

For * classes, we train * neural networks. For the kth class, 

we denote the block of size P × P as W7���
and the 

corresponding neural network operation as X����⋅�. We update 

 

Fig.1   Example of class-specific neural network framework for two clusters. 
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the parameters for ���� , (����
, and (����

 by minimizing the 

mean-squared-error (MSE): 

 ����, (����
, (����

 =  !"#$% Z||X���[W7 ���\ − W7 ���||]� . (6) 

C. Logistic Regression for the Classification of Compressed-

Sensed Vector 

Without recording the extra information for class labels of 

compressed-sensed vectors, we use a trained logistic regression 

to predict the class labels of compressed-sensed vectors.  

For the $56compressed-sensed vector 7̂ ∈ ℝ_×J, we denote 

the class label as �7  and the parameter vector of the trained 

logistic regression for the /56 class as `� ( / = 1: *� . The 

probability of the compressed-sensed vector belonged to class / is: 

E��7 = /| 7̂� = aME�`�A 7̂�/ aME b G `�cA 7̂
2

�c3�
d  , 

 

 

(7) 

where exp(⋅) is the exponential function [13]. We maximize E��7 = /| 7̂� to get the predicted label �7 of 7̂. 
D.  Hashmap Data Structure to Accelerate Compressed 

Sensing Speed and Reconstruction Speed 

For a compressed-sensed vector y, the decoder needs to 

assign it to the corresponding kth decoder based on the label 

predicted by logistic regression, which takes time to switch 

between decoders. Hence, we use a hashmap data structure so 

that we can decode a group of y vectors all at once. We group 

all compressed-sensed vectors into a matrix e ∈ ℝf×g�h , 

where %  is the number of compressed-sensed vectors and P�O is the length of these vectors. The kth decoder is denoted as i����⋅�, where / = 1: *. The labels of the compressed-sensed 

vector elements of e predicted by the trained logistic regression 

are saved in an 1D array l. According to the class labels in l, we 

extract the submatrix e���, which is formed by the compressed-

sensed vectors from class /, k = 1:K.  We decode the blocks 

from class /  all-together through Wj��� = i���[e���\ for / =1: *, where Wj��� ∈ ℝf<×g×g is the decoded blocks from class /, and %� is the number of blocks from class /.  In this way, the 

reconstruction speed is significantly accelerated.  

IV. EXPERIMENTAL RESULTS 

 We evaluate the performance of our proposed Gaussian-
awareness neural network using four CIF format video 
sequences. Each CIF video sequence has 300 frames and each 
frame has the size of 352 × 288 × 3 . To simplify our 
experiments, we only use luminance channel, resulting in each 
frame of size of 352 × 288 × 1 . For each dataset, we 
randomly select 150 frames as the training dataset, 60 frames as 
the validation dataset, and 90 frames as the testing dataset. We 
split the our video sequences in training dataset and validation 
dataset into 16 × 16 overlapped blocks with a split step of 8. 
For the testing dataset, we split the frames into 16 × 16 
nonoverlapped blocks. We vectorize all blocks in training and 
testing sets to train the Gaussian-mixture model as we assume 
we have them. For the neural network training, we set the epoch 

as 150, the batch size as 64, and use the Adam optimizer [14]. 
For each training epoch, we use our validation dataset to do 
validation and save the best model till that training epoch. We 
compare our model with the block-based CSNet [5] and 
SparseNet [8] at sampling rates (R=M/N) of 0.05, 0.10, 0.15, 
0.20 and 0.25. We use peak signal-to-noise ratio (PSNR) as the 
quality evaluation metric. It is defined as  PSNR = 20 ⋅log�w�MAX� − 10 ⋅ log�w�MSE� [dB],  where MAX is the 
maximum pixel intensity 255, and MSE is mean-squared-error 
between original frame pixel intensity and reconstructed frame 
pixel intensity.  

 TABLE I shows the total reconstruction time (without GPU) 
for 90 testing frames of Hall Monitor. Although our approach is 
slower than CSNet and SparseNet because our approach needs 
to complete the reconstruction of one class of frame blocks 
before reconstructing another class of frame blocks using one 
processor, it has higher PSNR than the CSNet. Note that the 
reconstruction procedures for different classes of frame blocks 
can be paralleled to reduce the total reconstruction time. 

 Fig. 2 and Fig. 3 show the visual quality of selected 
reconstructed frame of Hall Monitor and Akiyo video sequences  
at the sampling rates at 0.10 and 0.20 under different methods. 
Our approach with k=6 achieves the best visual quality.  

 TABLE II shows the average reconstruction PSNR values in 
the four video sequences at four sampling rates. As we increase 
cluster number k, PSNR is improved by 1.5 dB in Hall monitor, 
0.5 dB in Foreman, 2.5 dB in Container, and 2.0 dB in Akiyo, 
compared to SparseNet. 

 

V. CONCLUSTIONS 

     We propose a block-level deep learning compressed sensing 
framework that utilizes the types of frame blocks predicted by 
the Gaussian-mixture model. The model achieves enhanced 
reconstruction quality for video frames but still at a fast speed. 
Our contribution to this paper will help future                                                                                    
researchers to consider the similarities between blocks in their 
neural network design for compressed sensing and even for 
some general image processing purposes.  Future research will 
be focused on using complex convolutional neural networks to 
improve the reconstruction quality of video sequences and 
considering other visual tasks [15].  

 

 

 

 

TABLE I: The total reconstruction time at R=0.10 for 90 testing 

frames (352 × 288� of Hall Monitor. 

Method Time [seconds] 

CSNet 7.79 

SparseNet 9.22 

GMMNet(k=2) 12.69 

GMMNet(k=3) 15.62 

GMMNet(k=4) 19.44 

GMMNet(k=5) 23.13 

GMMNet(k=6) 26.37 
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Fig. 2 PSNR for Hall Monitor under R=0.10: Left to right: original; CSNet, 34.57 dB; SparseNet, 35.17 dB; Ours (k=2), 35.18 dB; Ours (k=6), 
37.16 dB. 

     
Fig. 3 PSNR for Akiyo under R=0.20: Left to right: original; CSNet, 38.63 dB; SparseNet, 39.31 dB; Ours (k=2), 39.93 dB; Ours (k=6), 41.44 

dB.  

 

 

 

TABLE II: The average reconstruction PSNR [dB] versus the sampling rate (R=M/N) of testing datasets. 
Dataset Method R=0.05 R=0.10 R=0.15 R=0.20 R=0.25 

Hall monitor CSNet 31.20 34.37 35.99 37.34 38.25 

SparseNet 31.98 34.89 36.56 37.92 39.07 

GMMNet(k=2) 32.54 35.15 36.82 38.21 39.36 

GMMNet(k=3) 32.36 35.71 37.34 38.68 39.92 

GMMNet(k=4) 33.19 35.86 37.52 38.81 40.07 

GMMNet(k=5) 33.52 36.15 37.73 39.02 40.25 

GMMNet(k=6) 33.75 36.26 37.80 39.06 40.25 

Foreman CSNet 29.11 31.23 32.59 32.96 34.16 

SparseNet 29.21 31.46 32.78 33.86 34.78 

GMMNet(k=2) 29.35 31.58 32.91 33.99 34.98 

GMMNet(k=3) 29.48 31.66 32.97 34.03 34.98 

GMMNet(k=4) 29.58 31.70 32.94 34.09 35.08 

GMMNet(k=5) 29.74 31.82 33.10 34.18 35.16 

GMMNet(k=6) 29.81 31.84 33.13 34.22 35.15 

Container CSNet 28.74 30.85 31.43 33.46 34.16 

SparseNet 29.21 31.46 32.78 33.86 34.78 

GMMNet(k=2) 30.04 32.68 34.35 35.65 36.93 

GMMNet(k=3) 30.49 32.93 34.47 35.85 37.04 

GMMNet(k=4) 30.98 33.42 34.95 36.31 37.46 

GMMNet(k=5) 31.26 33.59 35.05 36.35 37.55 

GMMNet(k=6) 31.33 33.64 35.38 36.43 37.63 

Akiyo  CSNet 34.35 37.43 39.03 40.04 40.98 

SparseNet 34.64 37.83 39.59 40.96 41.83 

GMMNet(k=2) 35.64 38.74 40.47 41.82 42.97 

GMMNet(k=3) 36.91 39.70 41.19 42.32 43.58 

GMMNet(k=4) 37.24 39.97 41.45 42.61 43.80 

GMMNet(k=5) 37.70 40.14 41.65 42.84 43.90 

GMMNet(k=6) 37.89 40.26 41.73 42.97 44.02 
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