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Abstract—Future frame prediction is an emerging, yet 
challenging task in the deep learning field due to its inherent 
uncertainty and complex spatiotemporal dynamics. The state-
of-the-art methods achieve significant accuracy at the expense 
of complex, computationally intensive deep neural networks, 
which makes it difficult to deploy in mobile devices. In the light 
of recent wide popularity of Green AI which aims for efficient 
environment friendly solutions alongside accuracy, we propose 
a lightweight model using 3D separable convolutions, which can 
predict future video frames with reduced model size and 
reasonable accuracy-complexity tradeoffs as compared to the 
state-of-the-art methods.   

Keywords— autoencoder, convolutional neural network, deep 
learning, depthwise convolution, spatiotemporal LSTM, video 
prediction, 3D convolution, 3D separable convolution. 

I.  INTRODUCTION  
The task of video prediction aims to generate unseen 

future video frames based on the past ones. It has caught wide 
attention from the deep learning arena due to its applicability 
in various real-world scenarios like weather forecasting [1], 
traffic flow prediction [2], video compression [3], etc. The 
internal representation, mainly the spatial correlations and 
temporal dynamics of the video, is learned and used to predict 
the next frames. Recent studies show the potential of 3D 
convolutional neural networks (CNNs) in learning spatio-
temporal dynamics [4, 12]  better than 2D CNNs and recurrent 
neural networks (RNNs). One major challenge of this task is 
its heavy computational intensity, due to its complex 
structures and large amount of model parameters along with 
the inherent uncertainty of the task. Hence, a lightweight 
approach for video prediction which significantly reduces the 
number of parameters and computational complexity while 
achieving similar prediction capability is presented in this 
paper. Our contributions can be summarized as follows: 

- A lightweight deep network model with 3D separable 
convolutions is proposed for video prediction. 

- A spatiotemporal long short-term memory (ST-LSTM) RNN 
based on 3D separable convolutions is proposed for the first 
time in literature for the task of video prediction. 

- We demonstrate the effectiveness of the proposed method 
with reasonable accuracy-complexity trade-offs. 

 The paper is organized as follows. In Section II, we discuss 
existing algorithms used for future frame prediction. In 
Section III, we elaborate on our proposed model in detail. 
Section IV presents our experimental studies and results 
compared with state-of-the-art models on three datasets. 
Section V concludes the paper.  

II. RELATED WORK 
Existing spatiotemporal prediction approaches can be 

classified into 1) CNN methods, 2) the combination of CNNs 
and RNNs, and 3) generative networks.  

A few methods [5, 6] use CNN-based autoencoders to 
learn the internal representations of the video. Deformable 
convolutions have been used in [5] for the fusion of features 
from previous frames.  

Most approaches rely on a combination of CNNs and 
sophisticated RNN models such as LSTM and gated recurrent 
unit (GRU) for long-term sequence prediction and thereby 
achieve higher prediction accuracy. As a prior work, Shi et al. 
introduce ConvLSTM [7] which combines CNNs with 
LSTMs to learn the spatial and temporal content for sequence 
forecasting problems. Models such as ConvTTLSTM [8] and 
McNet [9] are built upon ConvLSTM to better learn the 
spatiotemporal correlations. Later on, PredRNN [10] 
introduces new spatiotemporal memory flow using ST-LSTM 
by adding extra connections between time steps and was 
further extended to PredRNN++ [11]. Recently, E3D-LSTMs 
[12] are developed by fusing 3D CNNs into LSTMs to 
incorporate convolutional features in recurrent state 
transitions over time.  

Other methods [13, 14] adopt generative adversarial 
networks (GANs) to produce sharp and quality images. 
However, such GAN-based networks suffer from instability in 
adversarial training and may get blurry predictions as they find 
difficulty in balancing adversarial and reconstruction losses 
[15]. These GAN-based approaches and other generative 
networks [16] which use variational autoenocders (VAE) 
produce high fidelity video predictions, but with the aid of 
huge computational resources. 

III. PROPOSED VIDEO PREDICTION NETWORK 
In this section, we discuss our proposed video prediction 

network. The network consists of a two-way auto-encoder 
(AE) and a reversible predictive module (RPM), both of which 
are built with 3D separable convolution layers. 

A. Proposed Prediction Network 
The proposed network was inspired by CrevNet [17], 

which uses the i-RevNet [18] architecture to preserve 
information during the feature extraction process. 

 Fig. 1a depicts the proposed video prediction architecture. 
The input of the network is a 4D tensor 𝐗  of shape                  𝐶 ×  3 ×  𝐻 ×  𝑊  (channel ×  temporal length ×  height × 
width), representing three consecutive video frames at time 
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steps   𝑡 1, 𝑡, 𝑡 1. The number of channels C is set as 1 and 
3 for grayscale and RGB images, respectively. The output of 
the network is a 4D tensor 𝐗 , representing the predicted video 
frames at time steps 𝑡, 𝑡 1, 𝑡 2.  

As shown in the upper branch of Fig. 1a, the network input 𝐗  is split channel-wise into two groups 𝑥   and 𝑥  
each of dimension 2𝐶 ×  𝐿 ×  × . Each of these input 
groups goes through a forward pass of the AE, consisting of 𝑀 layers of AE blocks. During the forward pass, one group 
passes through an AE block and is added to the other input 
group. This process continues in an alternating fashion, thus 
forming the two output groups 𝑥  and  𝑥   , each of size                                   32𝐶 ×  𝐿 ×  × .          

Afterwards,    x   and x  are fed to the separable RPM, 
as shown in Fig. 1c. The separable ST-LSTM outputs two 
groups of feature maps �̅� , �̅� . They go through the backward 
pass of the two-way AE in an alternating manner simlar to the 
forward pass, as shown in Fig. 1a lower branch, to output the 
two predicted channel groups 𝑥  and 𝑥 .  Finally, the two 
predicted groups are merged to form the final predicted video 
clip 𝐗  ( frames at time steps 𝑡: 𝑡 2). 

B. AE Block with 3D Separable Convolutions 
While the baseline model CrevNet [17] adopts standard 

3D convolution to extract spatial-temporal features, our 
proposed model adopts separable 3D convolutions to reduce 
model size and computational complexity. This subsection 
explains Fig. 1b (an AE block) along with the proposed 3D 
separable convolution. An AE block consists of three 3D 
separable convolutional layers, each of which is followed by  

batch normalization and ReLU activation function.   
The 4D input to a standard 3D convolution is  𝐶 ×  𝐿 × 𝐻 ×  𝑊, where 𝐶 is the number of input channels, 𝐿 is the 

length in time dimension, 𝐻 and 𝑊 are the height and width 
of the feature maps respectively. N filters of size 𝐶  × 𝐾 × 𝐾  ×  𝐾  (channel × time × height × width) move in three 
directions (time, height, width) to generate a 4D output tensor 𝑁 ×  𝐿′ ×  𝐻′ ×  𝑊′ , where 𝐿 , 𝐻′ and 𝑊′  are the length, 
height, and width of the output tensor, respectively. 

 In order to reduce the computational load of the standard 
3D convolution, we split the process to two steps as shown in 
Fig. 1b: (1) depthwise convolution, where we apply filters of 
size  1 ×  𝐾 × 𝐾 × 𝐾  to each of the 𝐶  input channels to 
produce an intermediate feature map of size 𝐶 ×  𝐿′  ×  𝐻′ × 𝑊′  ; and (2) pointwise convolution, where filters of size 𝐶 × 1 ×  1 × 1  are applied to the intermediate feature map 
along the channel direction to produce an output of size  1 × 𝐿′ ×  𝐻′ ×  𝑊′ .    𝑁  filters are applied to generate a 4D 
output tensor of size 𝑁 × 𝐿′ ×  𝐻′ ×  𝑊. This process can 
reduce the computational cost of the standard 3D convolution 
by   , where  𝑁 is the number of output channels and 𝐾 
is the filter size. Such concept of depthwise separable 
convolution was introduced in MobileNet [19] and it has been 
found effective in computer vision tasks such as moving 
object detection [20] and object segmentation [21]. 

C. ST-LSTM Block with 3D Separable Convolutions 
The proposed separable RPM as shown in Fig. 1c 

processes the feature output maps of the two-way AE. At 
timestep  𝑡 1 , the input feature groups are 𝑥  and 𝑥 . 
They go through 𝑁 blocks, each consisted of a separable 

- 

 

Fig. 1. a ) The architecture of the proposed video prediction model. b) The structure of a proposed AE block. c) The structrue of the separable RPM at 
three time steps 𝑡 1, 𝑡, 𝑡 1. A separable RPM has N blocks, each consists of a 3D separable ST-LSTM cell and a separable self-attention module. 
Orange arrows denote the spatiotemporal memory flow and black arrows denote the hidden state and temporal memory cell transitions 

 
a) Proposed prediction architecture 

c)  Separable RPM 
b) AE block 

Forward pass 

Backward pass 
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ST-LSTM module (blue rectangle in Fig. 1c) and a separable 
attention module (pink rectangle in Fig. 1c). Both of these two 
modules are constructed by the proposed 3D separable 
convolutions. In particular, the attention module helps to form 
a weighted sum of the two groups and it consists of one 3D 
separable convolution layer followed by a sigmoid activation 
operation.  

In Fig. 1c the orange arrows denote the spatiotemporal 
memory flow 𝑀 , and the black arrows denote the temporal 
memory flow 𝐶  and the hidden state 𝐻  transitions of ST-
LSTMs. The superscript 𝑙 denotes the 𝑙-th layer of ST-LSTM, 𝑙 1, 2, … , 𝑁, and 𝑡 denotes the time step. The outputs of the 
separable RPM at time step 𝑡 1 are two feature groups �̅�  
and �̅� , along with a spatiotemporal feature 𝑀  that is taken 
as an input of the separable RPM at time step 𝑡. At time steps 𝑡, 𝑡 1, ⋯, the separable RPM processes the data in a similar 
way as that for time step 𝑡 1. 

IV. EXPERIMENTS AND RESULTS 
 In this section, we demonstrate the effectiveness of the 
proposed method, through extensive experiments done on the 
synthetic Moving MNIST dataset [22], and two real-world 
datasets KTH action [23] and BAIR [24]. The models were 
trained with the PyTorch framework using an NVIDIA Tesla 
V100 32 GB GPU. The ADAM optimizer was used to 
minimize the L2 loss between the input and the predicted 
frames. The initial learning rate was set at 0.002 with an 
exponential decay factor of 0.2 for every 50 epochs.  

A. Moving MNIST Dataset 
The synthetic Moving MNIST dataset has two subsets: 

Moving MNIST-2 and Moving MNIST-3. Moving MNIST-2 
consists of sequences of 20 frames, in which two digits 
continuously move with constant velocity and angle, bouncing 
inside a black 64 ×  64 frame, potentially overlapped and 
occluded. Moving MNIST-3 contains frames with 3 digits, 
potentially overlapped. Our model and the state-of-the-art 
models were trained on Moving MNIST-2 and tested on both 
Moving MNIST-2 and Moving MNIST-3.  

  

 The proposed prediction architecture for this dataset is 
composed of a two-way autoencoder with 12 AE blocks for 
both forward and backward pass and 8 RPMs. The batch size 
was chosen as 32 and model training was stopped after 
250,000 iterations.  

To evaluate the performance of our model, we calculated 
the mean squared error (MSE) and the structural similarity 
index (SSIM) between the ground-truth and predicted frames. 
Lower MSE and higher SSIM indicates better predictions. 
Table I compares the prediction accuracy, model parameters, 
model size, and computational complexity of our proposed 
model with state-of-the-art methods PredRNN [10], 
PredRNN++ [11] and CrevNet [17]. The best and second-best 
results of each metric are highlighted in red and blue, 
respectively. Our proposed model is superior in terms of 
fewest model parameters, smallest model size and lowest 
computational complexity measured by floating point 
operations (FLOPs). In terms of prediction accuracy, the 
proposed model achieves the second best MSE and SSIM 
values. 

From the visual results in Fig. 2, we observe that PredRNN 
suffers from blurring and maintaining the shape of digits over 
time. For example, digit 3 for Moving MNIST-3 in the right 
figure predicted by PredRNN and PredRNN++ loses its shape 
with the passage of time. Though CrevNet produces sharper 
images, our proposed model successfully tracked the motion 
of the digits without blurring, yet requiring much smaller 
model size and less computational complexity.  

B. KTH Action Dataset 
This dataset contains sequences of 25 individuals doing six 

types of actions: walking, running, jogging, boxing, 
handwaving and hand clapping. Each video sequence lasts 
about 4 seconds, with 25 frames per second (fps). The training 
strategy in [10] was followed, in which sequences of persons 
1-16 were used for training and sequences of persons 17-25 
were used for testing. The frames were resized to a resolution 
of 128 × 128 pixels. 

Fig. 2. Qualitative results on Moving MNIST-2 dataset (left) and Moving MNIST-3 dataset (right).   Top row: the ground-truth frames to be predicted 
at time steps 𝑡  11 to 𝑡 20.  Remaining rows: the predictions of different models and our proposed model. 

TABLE I. QUANTITATIVE RESULTS ON MOVING MNIST DATASET 

Ground truth 

PredRNN 

PredRNN++ 

CrevNet 

Proposed 
Model  

  𝑡 11      12      13       14       15       16        17 18 19 20  𝑡 11 12 13 14 15  16        17       18      19 20  

 

Model MNIST-2 MNIST-3 # Params  Model size 
(bytes) 

FLOPs 
  MSE SSIM MSE SSIM 

PredRNN [10] 55.4 0.879 83.6 0.838 23.86M 93 MB 115.9G 
PredRNN++ [11] 46.2 0.902 68.4 0.864 15.09M 57.42 MB 106.8G 
CrevNet [17] 24.3 0.9357 40.6 0.916 5M 60.2 MB 1.0G 
Proposed Model 44.1 0.916 63.12 0.891 368.96K 4.8 MB 0.08G 
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The prediction architecture of our proposed model for this 
dataset consists of a two-way autoencoder with 14 AE blocks 
for both forward and backward pass and 16 RPMs. In the 
testing phase, the model observed the first 10 frames in each 
test sequence and predicts the next 20 frames. The prediction 
accuracy of the models was evaluated by the peak-signal-to- 
noise ratio (PSNR) and SSIM. A higher value for both metrics 
indicates better performance. 

Table II summarizes the quantitative results of our model 
compared to the state-of-the-art models. Again, our model 
achieves the best performance in terms of model size and 
complexity. Besides, our model easily outperforms PredRNN 
in PSNR and SSIM. Although our PSNR is ranked third, the 
SSIM of our proposed model is the second-best. Since SSIM 
is more consistent with human perception than PSNR, this 
indicates the predicted frames of our proposed model have 
better visual quality than PredRNN and PredRNN++, which 
is also demonstrated in Fig. 3.  

Fig. 3 shows the predicted frames of all compared models. 
Due to space limitations, we include only the frames from 
specific time steps. We observe that our model outperforms 
PredRNN and PredRNN++ by carrying motion information 
and protecting detailed structure of the person across longer 
time steps, while the prediction results of PredRNN and 
PredRNN++ become blurry over time. Though some of the 
detailed spatial features (e.g, the white line) are not preserved 
by the 25th frame, our model captures key information of the 
moving object. CrevNet does produce better images, but we 
can observe that at some time steps, our model is adept in 
learning features. For example, at  𝑡 19, the shape of legs 
is better shown in our model than in CrevNet. 

C. BAIR dataset 

     The third dataset is a popular color video dataset in 
video prediction literature, the BAIR towel-pick dataset [24], 
which has sequences of a robotic arm picking and placing 

objects like towels, shirts, and jackets. This is a challenging 
dataset due to the stochastic arm movements of the robot. The 
original frames were resized to a resolution of 64 ×64. Our 
model’s prediction architecture and evaluation metrics were 
similar to those for the KTH action dataset. The future 10 
frames were predicted after observing 10 preceding frames. 

 We compare our model’s efficacy to the state-of-the-art 
models SVG [16] and CrevNet [17]. As shown in Table III, 
our model outperforms these two models in computational 
efficiency along with the second best PSNR and SSIM values. 

Fig. 4 demonstrates a few samples from a clip where a 
robotic arm moves above the objects on table. We observe that 
the positions of the moving robotic arm are correctly predicted 
by our proposed model at different time steps, although the 
results are a little blurrier than those of CrevNet. In contrast, 
SVG failed to capture the moving robotic arm at all time steps.  

V. CONCLUSION 
In this paper, we propose a lightweight video prediction 

method based on 3D separable convolutions and LSTMs. 
Experimental studies demonstrate the efficiency of our model 
on both synthetic and real-world datasets. With significantly 
fewer model parameters and lower computational complexity, 
our proposed model is able to achieve reasonable prediction 
accuracy and visually pleasing results. Therefore, our model 
is more suitable for memory-constrained and computation 
resource-limited platforms, such as mobile and embedded 
devices. In our future study, we intend to upgrade our model 
by incorporating more efficient architectures to achieve better 
spatiotemporal prediction performance while maintaining a 
small model size. 

Fig. 3. Qualitative results on the KTH action dataset. Top row: the 
ground-truth frames to be predicted at time steps 𝑡  11 , 13, 15, 17,19, 21, 23, 25, 27, 29 . Remaining rows: the predictions of a) 
PredRNN, b) PredRNN++, c) CrevNet, and d) our proposed model. 

TABLE II. QUANTITATIVE EVALUATION ON KTH  ACTION DATASET  

Model PSNR SSIM # Params Model 
size 

FLOPs 

PredRNN [10] 26.23 0.839 23.86M 93 MB 123.9G 
PredRNN++ [11] 28.41 0.865 15.09M 57.42 MB 115.8G 
CrevNet [17] 28.70 0.8768 9.89M 70.9 MB 7.76G 
Proposed Model 27.02 0.8671 727.26K 9.2 MB 0.6G 

 
 
a)  
 
b)  
 
c)  
 
d)  

 

           
 

                                         Groundtruth 𝑡 11      13      15       17       19       21       23        25      27 29  

Predicted frames 

TABLE III. QUANTITATIVE EVALUATION ON BAIR DATASET  

Predicted frames 

a) 
 
 
 
b) 
 
 
 
c) 

Model PSNR SSIM # Params Model 
size 

FLOPs 

SVG  [16] 19.13 0.7742 22.8M 91.5 MB 123.9G 
CrevNet [17] 23.16 0.8139 9.89M 70.9 MB 7.76G 
Proposed Model 22.92 0.7963 727.26K 9.2 MB 0.6G 

 

 

 

Fig. 4. Qualitative results on the BAIR dataset. Top row: the ground-
truth frames to be predicted at time steps 𝑡  11 , 14, 17, 20 . 
Remaining rows: the predictions of a) SVG, b) CrevNet, and c) our 
proposed model.  

 

                                      Groundtruth 𝑡 11 14       17                       20  
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