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Abstract— Generative adversarial network (GAN)-based 

image compression approaches reconstruct images with highly 

realistic quality at low bit rates. However, currently there is no 

published GAN-based image compression approach that utilizes 

advanced GAN losses, such as the Wasserstein GAN with gradient 

penalty loss (WGAN-GP), to improve the quality of reconstructed 

images. Meanwhile, existing deep learning-based image 

compression approaches require extra convolution layers to 

estimate and constrain the entropy during training, which makes 

the network larger and may require extra bits to send information 

to the decoder. In this paper, we propose a new GAN for image 

compression with novel discriminator and generator loss functions 

and a simple entropy estimation approach. Our new loss functions 

outperform the current GAN loss for low bitrate image 

compression. Our entropy estimation approach does not require 

extra convolution layers but still works well to constrain the 

number of bits during training.  

Keywords— entropy estimation, generative adversarial network, 

hinge loss, image coding, Wasserstein generative adversarial 

network, visual communications 

I. INTRODUCTION  

Deep learning-based image compression approaches have 
outperformed traditional image compression approaches, such 
as JPEG2000, in terms of the quality of reconstructed images [1] 
[2], and are even comparable to BPG [3]. Such approaches use 
several transform layers trained in an end-to-end manner to 
minimize the rate-distortion function: ��� (���	 +  λ ��
�������), (1) 

where λ  is a control factor. However, the distortion in these 
approaches is usually the mean square error (MSE), which alone 
may not capture the visual reality under a low bit-rate. A least 
squares generative adversarial network (LS-GAN) was 
proposed for image compression [4]. Since the adversarial 
learning nature of GAN can generate photo-realistic images, 
using a generator as the encoder-decoder for image compression 
at low bitrates decodes images with better perceptual quality [5]. 
However, LS-GAN does not control the bit-rate during training. 
Some other existing GAN-based image compression methods 
control bit-rates by an entropy loss. The entropy loss is estimated 
using extra network layers, so the whole GAN model becomes 
much larger [6], [7], and requires sending side information to 
decoders.  

 In this paper, we design an end-to-end GAN-based approach 
for low bit-rate image compression.  Our major contributions 
are:  (1) We propose novel discriminator and generator loss 
functions to enhance the quality of decoded images. The 
proposed discriminator loss improves the original Wasserstein 
GAN with gradient penalty (WGAN-GP) loss with a hinge loss, 
which only penalizes incorrect classification results. The 

proposed generator (encoder-decoder) loss includes a content 
loss that combines mean absolute error (MAE) and multi-scale 
structural similarity (MS-SSIM), which decodes images with 
more texture details and higher perceptual quality.  (2) We 
propose a simple entropy estimation method, which produces 
the entropy loss to trade off the bit rates and decoding quality. 
This method does not require training additional convolution 
layers and avoids sending side information to the decoder.   

II. BACKGROUND 

A. Generative Adversarial Network 

A generative adversarial network [8] includes a generator, 
G, to transform noises into photo-realistic images, and a 
discriminator, D, to distinguish generated images from real 
images. Since the traditional GAN algorithm is unstable in 
training, the Wasserstein GAN (WGAN) algorithm [9] was 
proposed to adopt weight clipping to enforce a Lipschitz 
constraint on the discriminator. Further, the WGAN-GP 
algorithm [10] adds a soft constraint on the norm of the gradient 
to encourage the discriminator to be 1-Lipschitz. Its 
discriminator is trained by minimizing the loss function:     � = ��������� − ����(�)� + λ�  �||∇�#����#�||$ − 1�$& , (2) 

where �#  is the interpolation between the real data �  and the 

generated data ��, and ��(⋅) is the discriminator. While ��(�) is 

expected to output 1, ������ is expected to output −1. Although 

these advanced GAN algorithms addressed the problem of 

instable training, their discriminator loss penalizes both correct 

and incorrect classification results, which is inefficient.  

B. GAN for Deep Image Compression 

 Agustsson et al. propose an LS-GAN-based approach [11] 

for extremely low bit-rate image compression [4]. However, 

their method does not utilize entropy loss to trade off bit rates 

and image quality, which cannot adapt to different transmission 

bandwidth requirements. Wang et al. [12] use a multi-scale 

patch-based discriminator, which can only tell real or fake 

between local patches, instead of global images. Mentzer et al. 

propose the HiFiC model, which uses a deep conditional GAN 

with a hyper-prior for entropy estimation [7]. However, HiFiC 

does not target low bitrate image compression and adding a 

hyper-prior model makes GAN model larger. Besides, MSE is 

adopted in [4] and [7] as the content loss, which is not a 

perceptual quality metric and is inferior to SSIM in decoding 

images consistent with the human vision system (HVS) [13]. 

Furthermore, these GAN models for image compression do not 

utilize advanced GAN losses; thus, their decoded images may 

not have satisfying visual qualities.  
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III. PROPOSED APPROACH 

Fig.1 shows our proposed GAN architecture for low bitrate 
image compression. We propose a novel GAN loss function and 
simple entropy estimator. The discriminator tells “real” (ground-
truth) input images from “fake” (decoded) ones. Our proposed 
entropy estimator avoids extra model parameters and sending 
side information to the decoder, which are required by the hyper-
prior model [7].  

A. Hinge GAN-GP Loss for Image Compression 

We improve the WGAN-GP loss in (2), and propose the 
hinge GAN-GP loss. The discriminator is updated by: ����  � ���)�0,1 − ��(�)�� +� [��)(0, 1 + ������)]    (3) 

+ λ+�  �||∇�#����#�||$ − 1�$&,   

where ,+ is the weight of the gradient penalty. In (3), ��(�) is 

expected to approach 1, and  ������ is expected to approach −1. If ��(�) ≥ 1 or ������ ≤ −1, the classification is correct 

and we do not penalize it. Only when ��(�) < 1 or ������ >−1, the error is penalized, therefore the trained discriminator is 

more effective than the one trained by (2), which penalizes both 

correct and incorrect classification results. Besides, we propose 

to train the generator by: ���1  (�2 + λ$ �3456756), (4) 

where  �2  =  ��−������� is the adversarial loss and ������ is 

expected to output 1,     �3456756 = ��(1 − α)MAE ���, �� − αMS-SSIM���, ��� (5) 

is the content loss, and ,$  controls the contribution of the 

content loss. The proposed content loss consists of a mean 

absolute error (MAE) between the decoded image �� and the 

original image � , which effectively prevents color shift in 

decoding images, and a negative MS-SSIM score, which  

captures perceptual loss and decodes images with more texture 

details. 

B. Channel Normalization, Quantization, and Entropy 

Estimator 

Let = ∈ ℝ@×B×C  be the output tensor of the activation 

function of the encoder network’s last layer, where D, E, and F are the channel number, width and height of =, respectively. 

For each entry =GHI  in =, where  1 ≤ � ≤ D, 1 ≤ J ≤ E and 1 ≤ K ≤ F, the output LGHI  of the channel normalization [7] 

is:  

LGHI = M=NOPQROPSTOPU VW X × YG + ZG, 
 

(6) 

where μHI = +@ ∑ =GHI@G]+ and σHI$ = +@ ∑ �=GHI − μHI�$@G]+  are the 

mean and variance of = over channels.   ϵ  in (6) is a small 

positive number that prevents the denominator from being zero. YG  and ZG  are learnable per-channel offsets. To establish a 

simple entropy model, we assume LGHI~a(ZG , YG$).   

We use the quantization approach proposed in [14]. We 

adopt a set of integer quantization centers b = {−2, −1, 0, 1, 2} 

and quantize each feature element LGHI to its nearest neighbor  
in set b: L�GHI = arg ���hi∈j |LGHI − 
k|. (7) 

      We denote the cumulative distribution function (CDF) of 

the standard normal distribution as Φ(⋅). Since LGHI  values that 

lie in the interval (L�GHI − 0.5, L�GHI + 0.5) are quantized as L�GHI, 

we can approximate the discrete probability o�L�GHI�  as Φ�L�GHI + 0.5� − Φ�L�GHI − 0.5� . Similarly, all  LGHI  values 

lying in (1.5, +∞)  are quantized as 2, so the discrete 

probability o�L�GHI = 2�  is approximated as  Φ(+∞) −Φ�L�GHI − 0.5� = 1 −  Φ�L�GHI − 0.5�. All LGHI  values lying in 

 

 

Fig. 1. The proposed hinge GAN-GP architecture with a simple entropy estimator. Top: generator (encoder-decoder); Bottom: 
discriminator. Numbers in convolution blocks represent the filter number, filter size, and stride, respectively. 
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(−∞, −1.5)  are quantized as −2 , so o�L�GHI = −2�  is 

approximated as  Φ�L�GHI + 0.5� − Φ(−∞) = Φ�L�GHI + 0.5� . 

Therefore, the estimated entropy of all entries L�GHI  in L� is: �756p4qr  = � �−log$ o�L�GHI�� =  

u � v−log$Φ�L�GHI + 0.5�w,   L�GHI = −2,                                � v−log$�1 − Φ�L�GHI − 0.5��w, L�GHI = 2,                     (8)� v−log$�Φ�L�GHI + 0.5� − Φ�L�GHI − 0.5��w, otherwise. 
       In the training process, however, the hard quantization in 

(7) is not differentiable, so we rely on the differentiable soft 

quantization:  

LGHI = ∑ ����QT�LNOPQhi��∑ ����QT�LNOPQh�����∈� 
khi∈j . 
(9) 

       The quantized feature then becomes:  L#GHI = stop_gradient(L�GHI − LGHI) + LGHI, (10) 

where the stop_gradient function indicates that in the backward 

pass, only the gradient of LGHI  is propagated to update network 

parameters, and the gradient of L�GHI − LGHI  is not propagated. 

In the forward pass, L#GHI = L�GHI  as in (7), and we construct a 

probability dictionary for the five quantized centers. Then, we 

apply standardized binary arithmetic code to encode all entries L#GHI  in the quantized tensor L# to binary representations based 

on the probability dictionary. 

C. The Total Generator Loss 

We use λ$ to control the image quality and  λ� to control the 

entropy loss so the total loss for our generator in (4) becomes: ���1 ��646�k = ���1 ��� + λ$�3456756 + λ��756p4qr�, (11) 

where �756p4qr is defined in (8).  

IV. EXPERIMENTAL RESULTS 

We used 235,679 nonoverlapping 256 × 256  patches 
extracted from 118,287 images in the COCO dataset [15] to train 
the GAN models. We used the Adam optimizer with a learning 
rate of 0.0001 and set the batch size as 24 and the epoch number 
as 40. We tested the models on all 24 images of 512 × 768 
resolution of Kodak dataset [16] as it is a frequently used test set 
to evaluate the performance of traditional JPEG, BPG, and 
learned image compression algorithms [1, 2, 3, 6]. 

Since we targeted at perceptual quality, we adopted the 
Fréchet Inception Distance (FID) [17] score and the MS-SSIM 
as the evaluation metrics for decoded images. The FID score is 
given by:  FID = ||��� − ����||$ + Tr���� + ���� − 2(�������)+/$�, (12) 

where ��  and ���  are the features of a pretrained Inception 

network, extracted from the original image �  and decoded 

image ��,  ��~a(��� , ���) ,  ���~a(���� , ����) and Tr(∙) is the 

trace of a matrix. A lower FID indicates that the distribution of 

the reconstructed images is closer to the distribution of the original images.  

     For the GAN models, we set the compressed feature dimensionality to be 16 × 16 × 16 . For our proposed model, we empirically set  λ+  in the discriminator loss of equation (3) to be 10, and set λ$  and λ�  in the total generator loss of equation (11) to be 100 and 10, respectively, which give good visual qualities of reconstructed images at a low bitrate. We empirically set α in (5) to be 0.84.       Fig. 2 shows the visual qualities of sample decoded test images of BPG, LS-GAN, WGAN-GP, HiFiC, and the proposed hinge GAN-GP. For WGAN-GP, we trained the generator by (11), and trained the discriminator by (2). We observe from Fig. 2 that images decoded by our proposed hinge GAN-GP have the highest visual quality and present clearer texture details. Decoded images of LS-GAN have unfaithful colors, decoded images of both LS-GAN and BPG are blurry in the window area, the girl’s nose and red cloth areas, while decoded images of WGAN-GP have obvious noisy artifacts, such as the window, and the green leaves. Decoded images of HiFiC are not smooth on the wall and on the girl’s forehead.      In Table 1, we provide the average bpp (bits per pixel), FID and MS-SSIM scores of 24 Kodak test images for all methods compared in Fig. 2. Our proposed hinge GAN-GP has the best MS-SSIM at the lowest bit rate, and its FID is the second best. Although HiFiC achieves the lowest FID score, it requires 65.31% more bit rates than our proposed model. Blurriness and block artifacts in BPG decoded images led to a high FID score, which represents low perceptual quality. This demonstrates that GAN can compress images with higher perceptual quality using adversarial learning.      Table 2 demonstrates the effectiveness of our proposed 

entropy estimation scheme. As we decrease λ�  in (11), the 

average bit rate increases, FID scores decrease and the MS-

SSIM values increase. This means our entropy estimator can 

effectively trade off bit rates and decoding quality. Besides, we 

observe that the FID of our proposed model at 0.0645 bpp is 

still better than that of BPG at 0.0948 bpp as shown in Table 1. 

    To demonstrate the effectiveness of our proposed content 

loss in (11), we provide an ablation study in Table 3. We fixed 

the discriminator loss as the proposed hinge GAN-GP loss in 

(3), and trained our model with three content losses: MSE only, 

MAE only, and the proposed MAE+MS-SSIM content loss in 

(5). We tested the three trained models on the 24 Kodak test 

images, and list the average bpp, MS-SSIM and FID in Table 

3. Our GAN model with the proposed MAE+MS-SSIM content 

loss has the best MS-SSIM and FID at the lowest bpp.  

    Table 4 shows the parameters of the encoder, decoder, and 

entropy estimator, as well as the floating-point operations 

(FLOPs) for the inference of a single 512 × 768 resolution 

Kodak image of the GAN models in comparison. Our entropy 

estimator does not have parameters, therefore, its 

computational complexity in terms of FLOPs is much lower 

than that of the hyper-prior entropy estimator used by HiFiC [7]. 

We do not compare the parameters and FLOPs of the 

discriminator, since these are not needed at the inference stage, 

and do not affect the actual encoding and decoding complexity. 
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Table 2.  Effectiveness of the proposed entropy estimator. λ� in (11) 50 20 10 

Average bpp     0.0645     0.0788     0.0908 

Average MS-SSIM     0.8672     0.8879     0.8998 

   FID      97.85      84.80      67.44 

 

Table 3.  Our GAN model with different content losses 

on 24 Kodak images [16].  MSE MAE MAE+MS-SSIM 
Average bpp 0.0931 0.0937 0.0908 

Average 

MS-SSIM 

0.8719 0.8856 0.8998 

FID 96.87 83.57 67.44 

 

V. CONCLUSION 

We propose a hinge GAN-GP with a simple entropy 

estimator. Our designed entropy estimator without parameters 

is simple but effective to reduce bit-rates. Our loss functions  

 

Table 4. The number of parameters of GAN models. The 

FLOPs of each model for the inference of a single Kodak 

image are included in parentheses.  

 Encoder Decoder Entropy 

Estimator 

Ours 5, 660, 720 

(58.7 G) 

155, 011, 683 

(518.0 G) 
0 (4.67 ×10Q² G) 

LS-GAN 

[4] 

5, 660, 688 

(58.6 G) 

155, 011, 683 

(517.0 G) 

N/A 

HiFiC [7] 5, 626, 116 

(58.7 G) 

154, 977, 123 

(518.0 G) 

5, 757, 460 

(5.05 G) 

 

 

improve previous GAN losses by retaining more textures and 

colors at a low bit rate. The images reconstructed by our model 

are also more natural-looking than those decoded by BPG or 

other GAN models at lower bit rates.  Our future work is to 

apply our GAN model with the simple entropy estimator to 

image compressed sensing [18].  

 

(A) (B) 

    
(C) (D) 

    
(E) (F) 

    
Fig. 2.  Sample images of Kodak dataset. (A) original; (B) BPG; (C) LS-GAN; (D) WGAN-GP; (E) HiFiC; (F) Proposed 

hinge GAN-GP.  

Table 1. Comparison of given approaches on 24 Kodak images [16]. The best and the second best value of each metric is 

marked in red and blue, respectively.  

 BPG LS-GAN WGAN-GP HiFiC Proposed hinge GAN-GP 

Average bpp 0.0948 0.1280 0.0934 0.1501 0.0908 

Average MS-SSIM 0.8932 0.8401 0.8620 0.8802 0.8998 

FID 107.40 98.07 70.09 55.27 67.44 
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