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Abstract—In recent years, deep learning-based image compres-
sion has achieved significant success. Most schemes adopt an end-
to-end trained compression network with a specifically designed
entropy model. Inspired by recent advances in conditional video
coding, in this work, we propose a novel transformer-based
conditional coding paradigm for learned image compression. Our
approach first compresses a low-resolution version of the target
image and up-scales the decoded image using an off-the-shelf
super-resolution model. The super-resolved image then serves
as the condition to compress and decompress the target high-
resolution image. Experiments demonstrate the superior rate-
distortion performance of our approach compared to existing
methods.

Index Terms—conditional coding, deep learning, entropy
model, hyperprior, image compression, super resolution, vision
transformer

I. INTRODUCTION

Learning-based image compression [1]–[8] has demon-
strated higher coding efficiency than traditional compres-
sion algorithms [9]–[11]. Existing learned image compression
schemes usually adopt an end-to-end trained compression
network with a specifically designed entropy model, utilizing
either hyperpriors [1], [2], or both hyperpriors and context
models [3]–[8]. Most recently, conditional coding has emerged
as a new paradigm for learning-based video coding [12]–
[18]. While traditional video codecs and prior learned video
compression models leverage inter-frame correlations by com-
pressing the residue between the target frame It and the
motion-compensated reference frame Ic, conditional video
coding directly compresses It under the condition of Ic.
According to (1),

H (It − Ic) ≥ H (It − Ic | Ic) = H (It | Ic) (1)

the residual entropy H (It − Ic) is no less than the conditional
entropy H (It | Ic). Therefore, conditional coding potentially
can save bit rates compared to residue coding. In this work,
we will extend conditional coding to the field of image
compression to improve the rate-distortion performance of
a learning-based image codec. Our main contributions are
summarized as follows:
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• We propose a learning-based conditional image compres-
sion model which adopts super-resolved images as the
conditional information.

• We propose a new multi-scale cross-attention transformer
structure in the conditional coding architecture, such that
the target images can be compressed with multi-scale
conditional information extracted from super-resolved
images.

• Experimental studies on popular image compression
datasets demonstrate that our proposed method offers
state-of-the-art performance visually and quantitatively.

II. RELATED WORK

End-to-end learned image compression has gained signifi-
cant attention to achieve improved compression performance
[1]–[8]. In particular, hyperpriors were introduced [1], [2]
to estimate the distribution of latent representation. Context
models [3], [5], [6], [8] were developed to exploit correlations
between current coding data and previously decoded data for
more effective entropy coding. For example, channel context
model was used in [3], [5] and spatial context model was used
in [6]. To utilize both spatial and channel correlations, the
spatial-channel auto-regressive context model (SC-AR CM)
[8] splits feature maps into spatial-channel chunks, which are
entropy encoded and decoded sequentially in a channel-first
order, followed by a 2D zigzag spatial order.

Transformer structures were also investigated in learned im-
age compression and demonstrated exceptional rate-distortion
performance [4]–[8], surpassing convolutional neural network
(CNN)-based image compression, because the self-attention
mechanism of transformers effectively captures global depen-
dencies within images. For instance, Entroformer [6] utilizes
transformers in the hyper encoder, hyper decoder, and context
model. STF [5] adopts the Swin transformer [19] in the
main encoder and decoder. Based on STF, SC-AR CM [8]
proposed transformer structures in the main encoder/decoder,
in the spatial-channel context model, and in the latent residual
prediction module, which further improved the rate-distortion
performance.

Recently, conditional coding has emerged as a promising
learning-based video coding framework [12]–[18]. Instead of
coding the residue between the target frame and the motion-
compensated reference frame, it directly encodes the target
frame using the reference frame as a condition. For example,



Fig. 1. The overall architecture of the proposed model. AE and AD are the
arithmetic encoder and arithmetic decoder. Q represents quantization. Super
Resolution Network is the large SwinIR [21] model pre-trained on the DIV2K
dataset [22].

DCVC [12] uses feature-domain context as the condition,
and DCVC-TCM [14] learns multi-scale temporal contexts as
the condition. Besides, conditional P-frame coding [16] and
conditional B-frame coding [17], [18] were developed using
augmented normalizing flows [20]. Such conditional coding
paradigms effectively improve the video coding efficiency.

III. THE PROPOSED METHOD

A. The Overall Architecture

Fig. 1 shows the overall architecture of our proposed condi-
tional learned image codec. Instead of directly compressing the
target image x ∈ R3×H×W , our conditional coding framework
has two steps. The first step adopts the method in [8] to
compress a low-resolution image xLR ∈ R3×H

4 ×W
4 , which

is 4× down-sampled from x, followed by a super-resolution
network which upscales the decoded low-resolution image
x̂LR to generate the super-resolved image xSR ∈ R3×H×W .

The second step adopts a conditional coder to compress
x. It consists of a pair of main encoder and decoder, and a
pair of hyper encoder and decoder, both of which take xSR

as the conditional information. The main encoder compresses
x into a latent representation y, which is then quantized as
ỹ. Then, ỹ is split into spatial-channel chunks ỹ1, ỹ2, · · · ,
which are coded in a sequential manner using the spatial-
channel auto-regressive context model (SC-AR CM) [8]. On

Fig. 2. The architecture of the main encoder and main decoder. The dimension
on each arrow represents the output tensor dimension.

the decoder side, the hyper decoder integrates the same con-
ditional information xSR to generate hµ and hσ , which serve
as the input of the SC-AR CM to estimate the distribution
parameters µi, σi, i = 1, · · · , n to assist the entropy coding
of the spatial-channel chuncks ỹi, i = 1, · · · , n. Utilizing the
latent residual cross-attention prediction (LRCP) module [8],
our scheme effectively reduces the quantization error to get
decoded latent representations ŷi, i = 1, · · · , n, which are re-
grouped into ŷ. Finally, the main decoder decompresses ŷ with
conditional information xSR to generate the decoded image x̂.

B. The Main Encoder and Decoder

Fig. 2 shows the main encoder and decoder with the
proposed cross-attention transformer-based conditional coding
architecture. Convolution blocks (Conv) are used to extract
conditional information at different scales from xSR, and
these multi-scale conditional features are fed into different
stages of the main encoder and decoder. The input image
x and the super-resolved image xSR are each processed
by a convolutional layer to spatially downsample the image
and perform channel-wise linear projection. The resultant
feature maps of dimension C × H

2 × W
2 are then partitioned

into non-overlapping windows and serve as the input of the
subsequent cross-attention-based shifted-window transformer
block (Cross-Attention Swin Block).

Fig. 3 shows the details of the Cross-Attention Swin Block.
The feature map xc extracted from the original image x
provides the source of key and value, while the conditional
feature map xc

SR extracted from the super-resolved image
xSR provides the source of query. The query guides the
compression of x by specifying what information in x should
be retained. By incorporating both the window multi-head
self-attention (W-MSA) and shifted window multi-head self-
attention (SW-MSA) within the Cross-Attention Swin Block,
the model can effectively reduce computational complexity
while establishing correlations among non-overlapping win-
dows.



Fig. 3. The architecture of the Cross-Attention Swin Block.

Fig. 4. The architecture of the hyper encoder and hyper decoder.

C. The Hyper Encoder and Decoder

Fig. 4 shows the architecture of the hyper encoder and
decoder, which also adopt the Cross-Attention Swin Block
to further process the latent representation y with multi-scale
conditional information extracted from xSR. The hyper de-
coder has two branches, one generating hµ, another generating
hσ . As shown in Fig. 1, hµ and hσ are used in the SC-AR
CM to estimate distribution parameters µi, σi, i = 1, · · · , n
for spatial-channel chuncks ỹi, i = 1, · · · , n. Besides, hµ also
serves as an input of the LRCP modules.

D. Training Loss

We trained two models: Ours(PSNR) and Ours(MS-SSIM)
for the proposed scheme. Ours(PSNR) uses the mean squared
error (MSE) as the distortion loss as shown in (2), such
that the trained model protects pixel-level fidelity. In contrast,
Ours(MS-SSIM) adopts the multi-scale structural similarity
(MS-SSIM) in the distortion loss as shown in (3), such
that the trained model protects more structural similarity and
perceptual quality. Besides, Rỹ and Rz̃ represent the bit rates

measured by the entropy of ỹ and z̃, respectively.

LPSNR = Rỹ +Rz̃ + λ×MSE(x, x̂), (2)

LMS-SSIM = Rỹ +Rz̃ + λ×
(
1−MS-SSIM(x, x̂)

)
. (3)

IV. EXPERIMENTAL STUDIES

A. Datasets

The proposed model was trained using the OpenImages
dataset [23], which is known for its diverse distribution of
images. From the original training set, we randomly selected
300,000 images to form our training set. To evaluate the
performance of the proposed model, as well as existing
methods, we employed three benchmark test datasets: Kodak
[24], Tecnick [25], and CLIC [26]. These datasets encompass
images of different resolutions.

B. Comparison with Other Methods

In our experimental studies, we compare the performance
of the proposed model with several state-of-the-art learning-
based image compression methods: SC-AR CM [8], STF [5],
Entroformer [6], and Coarse2Fine [2]. They represent the latest
advances in image compression techniques. We also include
traditional image compression methods, namely BPG [10] and
VVC Intra (VTM 19.2) [11], for comparison. They serve as
baselines that have been widely used in practical applications.

We quantitatively evaluate the rate-distortion (RD) perfor-
mance of the proposed model and existing methods. The bit
rates are measured in bits per pixel (BPP), and the bit rates of
our proposed model include the bits to encode both x and xLR.
The distortion between the decoded and ground-truth images
is measured using the peak signal-to-noise ratio (PSNR) and
the MS-SSIM.

Fig. 5 presents the PSNR and MS-SSIM curves for different
bit rates on the Kodak, Tecnick, and CLIC datasets, respec-
tively. The results demonstrate that Ours(PSNR) consistently
achieves the highest PSNR values across all datasets, indicat-
ing its superior performance in terms of pixel fidelity. Besides,
Ours(MS-SSIM) achieves the highest MS-SSIM values for all
datasets and all bit rates, showing its superiority in preserving
structural information, especially at low bit rates. Moreover,
Ours(PSNR) also offers higher MS-SSIM values than existing
learning-based methods SC-AR CM, STF, Entroformer, and
Coarse2Fine, and traditional image codecs VVC Intra and
BPG.

Fig. 6 shows the visual results. We present a sample decoded
image from each test dataset. We show an enlarged area
of each sample image, allowing for a close-up view of the
decoding quality. By comparing the proposed model with SC-
AR CM, STF, Coarse2Fine, VTM, and BPG, it is evident
that the proposed model excels in recovering fine details and
textures in the decoded images. Notably, the proposed model
demonstrates superior performance in preserving the edges of
the window in the Kodak image, capturing the line of the
tiles in the Tecnick image, and accurately representing the
flower of the man’s tattoo in the CLIC image. Below each
enlarged decoded image patch are the corresponding BPP,



Fig. 5. The rate-distortion curves of our proposed models and existing methods on the Kodak, Tecnick, and CLIC datasets.

Fig. 6. Sample images decoded by our proposed models and existing methods on the Kodak (1st row), Tecnick (2nd row), and CLIC (3rd row) datasets. The
best, 2nd best, and 3rd best BPP/PSNR/MS-SSIM values are shown in red, blue, and green, respectively.

PSNR (dB), and MS-SSIM values. We observe that for all
three sample images, Ours(PSNR) achieves the lowest BPP,
the highest or 2nd highest PSNR, and the 2nd highest MS-
SSIM. Ours(MS-SSIM) achieves the highest MS-SSIM values
with competitively low bit rates.

V. CONCLUSIONS

The proposed learning-based conditional image compres-
sion model introduces a novel transformer-based approach for

learned image compression. By incorporating super-resolution
images as the conditional information, the model achieves
reduced bit rates while maintaining high decoding quality. In
terms of future studies, we will conduct complexity analysis
and investigate conditional coding frameworks for machine
task-oriented visual coding.
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