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a b s t r a c t 

High-dimensional data usually exhibit intrinsic low-rank structures. With tremendous amount of stream- 

ing data generated by ubiquitous sensors in the world of Internet-of-Things, fast detection of such low- 

rank pattern is of utmost importance to a wide range of applications. In this work, we present an L 1 - 

subspace tracking method to capture the low-rank structure of streaming data. The method is based on 

the L 1 -norm principal-component analysis ( L 1 -PCA) theory that offers outlier resistance in subspace cal- 

culation. The proposed method updates the L 1 -subspace as new data are acquired by sensors. In each 

time slot, the conformity of each datum is measured by the L 1 -subspace calculated in the previous time 

slot and used to weigh the datum. Iterative weighted L 1 -PCA is then executed through a refining func- 

tion. The superiority of the proposed L 1 -subspace tracking method compared to existing approaches is 

demonstrated through experimental studies in various application fields. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Principal-component analysis (PCA) is a prevalent method for

imensionality reduction and subspace learning. Conventional L 2 -

orm-based principal-component analysis ( L 2 -PCA), however, is

asily affected by “outlier” values that are numerically distant from

he nominal low-rank signal. To deal with the problem of outliers

n subspace approximation, there are extensive studies in robust

CA methods. In the pioneer works [1–4] subspace learning is per-

ormed under an L 1 -error minimization criterion, or its variants.

he robust PCA (RPCA), a.k.a. principal-component pursuit (PCP)

eveloped in [5] performs low-rank and sparse decomposition by

inimizing a weighted sum of the nuclear-norm of the low-rank

omponent and the L 1 -norm of the sparse component. More re-

ently, the robust PCA idea is adopted in DECOLOR [6] , which in

ddition uses Markov random-field (MRF) modeling to improve the

ccuracy of detecting contiguous outliers. The method in [7] recast

he L 1 -error minimization problem into a weighted L 2 -error mini-

ization problem. By properly choosing the weights of data sam-

les, the formulated L 2 -error minimization problem is equivalent

o the robust L 1 -error minimization problem, and can be solved

fficiently via singular-value decomposition (SVD). The method in
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8] learns the low-rank representation for data by utilizing locality

nd similarity information among data, using graph-based mani-

old analysis. In [9] a fast, iterative algorithm is proposed for out-

ier resistant two-dimensional PCA based on the Frobenius-norm

ith respect to the spatial (attribute) dimensions and the 1-norm

or the summation over different data points. Authors in [10] pro-

ose to jointly select useful features and enhance the robustness

f PCA by the relaxation of the orthogonality constraints on the

ransform matrix. 

Another line of research performs robust subspace learning by

aximizing the L 1 -norm of the data projected onto the pursued

ubspace [11–15] . The pursued principal components are called

 1 principal components. The work in [11] presented a subopti-

al iterative algorithm for the computation of one L 1 principal

omponent and [12] presented an iterative algorithm for subop-

imal joint computation of d ≥ 1 L 1 principal components. In [13] ,

or the first time in the literature, algorithms for exact calculation

f L 1 principal components are developed. Later, suboptimal algo-

ithms were developed in [14] and [15] for fast computation of the

 1 principal components. This L 1 -PCA method has been success-

ully applied to a wide range of research fields such as direction-

f-arrival (DoA) estimation [16] and robust face recognition [17] .

esides, compressed-sensed-domain L 1 -PCA methods were devel-

ped for low-rank background scene and sparse foreground mov-

ng objects extraction from compressed-sensed surveillance video

equences [18] . In [19] , a reweighted L -PCA algorithm ( L -IRW)
1 1 
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was developed to refine the pursued L 1 -subspace in an iterative

manner. 

Nevertheless, existing L 1 -PCA methods in [11–19] are batch al-

gorithms designed for fixed data ensemble. As sensors keep acquir-

ing streaming data, it is essential to update the calculated subspace

with new information and track the potential gradual change of

data’s low-rank pattern. Robust subspace tracking has been devel-

oped to tackle this problem. A computationally efficient incremen-

tal PCA algorithm is developed in [20] for adaptive background

modeling and active object recognition. The authors in [21] pro-

pose an incremental non-negative matrix factorization scheme for

online processing of large data sets. The scheme incrementally up-

dates its factors by appropriately reflecting the influence of each

data sample on the factorization. In [22] , an online robust PCA

method is proposed that alternates between standard L 2 -PCA for

updating PCs and probabilistic selection of the new samples which

alleviates the impact of outliers. The online robust PC (OR-PCA)

method proposed in [23] reformulates the objective function of

PCP [5] by decomposing the nuclear norm into an explicit prod-

uct of two low-rank matrices, which can be solved by a stochas-

tic optimization algorithm. The method in [24] adopted similar

approach to that in [23] , and applied it to track the low-rank

structure of traffic flow volume in backbone networks. An adaptive

projected subgradient method based algorithm is proposed in [25] ,

introducing a cost function properly calculated for each time in-

stance and searching for the set of points which score zero loss.

Outlier detection and correction of corrupted data is employed to

purify data. The Grassmann Averages method proposed in [26] for-

mulates subspace estimation as the computation of the average

of subspaces spanned by data samples, which is scalable to large

datasets and robust to outliers. The Grassmannian robust adaptive

subspace tracking algorithm (GRASTA) [27] is an efficient and ro-

bust online algorithm for tracking subspaces from highly incom-

plete information. It uses a robust � 1 -norm cost function to im-

pose sparsity on the outliers which is formulated as an augmented

Lagrangian function, then the subspace and the outlier are esti-

mated by the alternating direction method of multiplier (ADMM).

The method in [28] adopts a similar approach to [27] , and it also

maintains the proximity of the updated subspace to the previ-

ous subspace estimate. The recursive projected compressive sens-

ing (ReProCS) algorithm was developed in [29] , [30] which per-

forms online robust subspace estimation, and was further extended

to a practically usable version (Prac-ReProCS) [31] . This series of

studies addressed the problem of recursively recovering sparse

and correlated signals in the presence of low-rank and correlated

noise. The methods were successfully applied to the scenario of

separating a slowly changing video background from correlated

moving foreground objects/regions. In [32] , an online mixture of

Gaussians (MoG) low-rank matrix factorization method (OMoGMF)

is proposed for robust video background subtraction. It modeled

the foreground as a MoG and the model is also regularized by

the learned foreground/background in previous frames. The model

can be formulated as a concise probabilistic maximum a poste-

riori probability (MAP) model, and can be readily solved by the

expectation-maximization (EM) algorithm. In [33] , a union of sub-

spaces tracking algorithm is proposed for online anomaly detec-

tion. The observed data samples are assumed to have a Gaus-

sian mixture model whose covariance matrices each are dominated

by a low-rank component. The online discriminative multi-task

tracker [34] is proposed with structured and weighted low rank

regularization. 

In this paper, we propose an L 1 -subspace tracking method. As

new data are successively acquired over time, the procedure up-

dates the L 1 -subspace to capture the underlying low-rank data

structure. In each time slot, nominal compliance of each sample

in the current processing window is inferred by its relative dis-
ance to the L 1 -subspace calculated in the previous time slot and

ranslated to a “weight”. Samples with larger weights tend to be

ominal samples and samples with smaller weights are more likely

o be the outliers. Iterative weighted L 1 -PCA is then carried out

ia a refining function. The function alternatively updates the bits

ssociated with the pursued L 1 -subspace and the sample weights.

pon convergence, the function returns a refined L 1 -subspace for

he current time slot. The whole procedure has the merits of out-

ier suppression through sample weighting and processing acceler-

tion through a warm-start bit-flipping technique. 

The remainder of this paper is organized as follows. In

ection 2 , we introduce necessary background on L 1 -PCA. In Sec-

ion 3, the proposed L 1 -subspace tracking algorithm is developed.

n Section 4 , the effectiveness of the proposed algorithm is demon-

trated through four experiments: (i) synthetic data example, (ii)

oving objects detection from streaming surveillance videos, (iii)

obust online cooperative spectrum sensing in a cognitive radio

etwork, and (iv) DoA tracking in wireless communications. Com-

utational complexity is analyzed in Section 5 . Finally, we draw

onclusions and discuss future work in Section 6 . 

. Background of L 1 principal-component analysis 

.1. L 1 -PCA and its solvers 

Consider N real-valued samples x 1 , x 2 , . . . , x N of dimension D

 N < D ) that form the D × N data matrix 

 = [ x 1 x 2 . . . x N ] . (1)

n conventional L 2 -PCA, one seeks to describe (approximate) data

atrix X by a rank- r product PQ 

T where P ∈ R 

D ×r , Q ∈ R 

N×r , r ≤ N .

iven data matrix X , L 2 -PCA minimizes the sum of the element-

ise squared error between the original matrix X and its rank- r

epresentation PQ 

T in the form of Problem P 

L 2 
1 

defined below, 

 

L 2 
1 

: (P L 2 , Q L 2 ) = arg min 

P ∈ R 

D ×r , P 

T P = I r 
Q ∈ R 

N×r 

‖ X − PQ 

T ‖ 2 , (2)

here I r is an r × r identity matrix, and matrix P has r orthonormal

olumns. Problem P 

L 2 
1 

is equivalent to the following two problems,

 

L 2 
2 

: P L 2 = arg min 

P ∈ R 

D ×r 

P 

T P = I r 

‖ X − PP 

T X ‖ 2 , (3)

nd 

 

L 2 
3 

: P L 2 = arg max 
P ∈ R 

D ×r 

P 

T P = I r 

‖ X 

T P ‖ 2 , (4)

or which the solution is given by the r dominant left singular vec-

ors of the original data matrix X . 

Nevertheless, by minimizing the sum of squared errors, L 2 prin-

ipal component calculation becomes sensitive to extreme error

alue occurrences caused by the presence of outlying samples in

he data matrix (samples that are numerically distant from the

ominal data, appear only few times in the data matrix, and are

ot to appear under normal system operation upon design). Moti-

ated by this observed drawback of L 2 subspace signal processing,

ubspace-decomposition based on L 1 -norm maximization was pro-

osed for robustness. Replacing the L 2 -norm in P 

L 2 
3 

by L 1 -norm,

he so-called L 1 -PCA calculates principal components in the form

f 

 

L 1 : P L 1 = arg max 
P ∈ R 

D ×r 

P 

T P = I r 

‖ X 

T P ‖ 1 . (5)
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ince the L 1 -norm metric is less likely to exaggerate the contri-

ution of outliers on the data projection, P L 1 
in (5) is likely to

e closer to the true nominal rank- r subspace than L 2 -PCA. The r

olumns of P L 1 
in (5) are the so-called r L 1 principal components

hat describe the rank- r subspace in which X lies. As shown in [13] ,

xact calculation of the L 1 principal components in P 

L 1 can be re-

ast as a combinatorial problem. In short, when the rank of the

ominal signal is r = 1 , P 

L 1 reduces to 

 L 1 = arg max 
p ∈ R 

D 

‖ p ‖ 2 = 1 

‖ X 

T p ‖ 1 , (6)

hich can be reformulated as 

max 
p ∈ R 

D 

 p ‖ 2 = 1 

‖ X 

T p ‖ 1 = max 
p ∈ R 

D 

‖ p ‖ 2 = 1 

max 
b ∈{±1 } N 

b 

T X 

T p = max 
b ∈{±1 } N 

max 
p ∈ R 

D 

‖ p ‖ 2 = 1 

p 

T Xb 

= max 
b ∈{±1 } N 

‖ Xb ‖ 2 = max 
b ∈{±1 } N 

(b 

T X 

T Xb ) 1 / 2 . (7) 

he optimal solution for (7) can be obtained by exhaustive search

n the N -dimensional space of the binary antipodal vector b with

omplexity O(2 N−1 ) . Denote this optimal solution as b 

opt , then the

ursued principal component is given by 

 L 1 = 

Xb 

opt 

‖ Xb 

opt ‖ 2 

. (8) 

When the rank of the nominal data is r > 1, problem P 

L 1 can be

ecast into [13] 

max 
P ∈ R 

D ×r 

P 

T P = I r 

‖ X 

T P ‖ 1 = max 
P ∈ R 

D ×r 

P 

T P = I r 

max 
B ∈{±1 } N×r 

tr (P 

T XB ) 

= max 
P ∈ R 

D ×r 

P 

T P = I r 

max 
B ∈{±1 } N×r 

tr (BP 

T X ) = max 
B ∈{±1 } N×r 

‖ XB ‖ ∗ (9) 

here ‖ · ‖ ∗ stands for nuclear norm. By Proposition 4 of

arkopoulos et al. [13] , to find exactly the optimal L 1 -norm pro-

ection operator P L 1 
in (9) we can perform the following steps: 

1) Solve (9) to obtain the optimal binary matrix B 

opt ∈ { ± 1} N × r . 

2) Perform singular value decomposition (SVD) on XB 

opt , such that

XB 

opt = U�V 

T . 

3) Return P L 1 
= [ U ] : , 1: r V 

T . 1 

.2. Sub-optimal bit-flipping algorithm for L 1 -PCA 

From (7) , we know that finding the optimal rank-1 L 1 -subspace

or a data matrix X ∈ R 

D ×N is equivalent to finding the optimal bi-

ary antipodal vector b 

opt ∈ { ± 1} N . In [14] , a fast bit-flipping (BF)

lgorithm was proposed to solve (7) . The BF algorithm for rank

 = 1 starts with an initial binary vector b 

(0) ∈ { ± 1} N , and itera-

ively produces a sequence of new binary vectors b 

( k ) (iteration in-

ex k = 1 , 2 , . . . ), in which b 

(k +1) differs from b 

( k ) only in a single

it position, selected so as to achieve the highest increase of the

uadratic value b 

T X 

T Xb in (7) . Upon convergence, the BF algorithm

enerates a suboptimal binary vector b 

c (superscript c stands for

at convergence”), then a suboptimal solution for the L 1 principal

omponent p L 1 
is obtained by 

 L 1 = 

Xb 

c ∥∥Xb 

c 
∥∥

2 

. (10) 

The above BF algorithm is extended in [15] for the calculation of

 > 1 L principal components. From (9) , we know that the problem
1 

1 [ U ] :,1: r stands for the first r columns of matrix U . 

 

s  

[

f finding r principal components is equivalent to finding a binary

atrix B ∈ { ± 1} N × r that maximizes ‖ XB ‖ ∗ . The corresponding BF

lgorithm starts with an initial binary matrix B 

(0) ∈ { ± 1} N × r and

teratively produces a sequence of new binary matrices B 

( k ) (itera-

ion index k = 1 , 2 , . . . ), in which B 

(k +1) differs from B 

( k ) only in a

ingle bit position, selected so as to achieve the highest increase of

 XB ‖ ∗ in (9) . The associated suboptimal solution for the rank- r L 1 -

ubspace P L 1 
can be obtained by performing the following steps:

) Run BF with input B 

(0) to obtain a suboptimal binary matrix

 

c ∈ { ± 1} N × r ; 2) Perform SVD on XB 

c such that XB 

c = U�V 

T ; and

) Return P L 1 
= [ U ] : , 1: r V 

T . 

.3. Iterative re-weighted L 1 -PCA 

Our preliminary study [19] proposed the iterative re-weighted

 1 -PCA ( L 1 -IRW) that generates a sequence of improved rank- r L 1 -

ubspaces P 

(k ) 
L 1 

∈ R 

D ×r , with iteration index k = 0 , 1 , . . . for a fixed

ata matrix X = [ x 1 , . . . , x N ] ∈ R 

D ×N . Initially, the batch L 1 -subspace

f (5) is obtained with the BF algorithm and denoted as P 

(0) 
L 1 

. Then,

 

(0) 
L 1 

is iteratively updated. In the k th iteration, the L 1 -subspace cal-

ulated in the (k − 1) th iteration P 

(k −1) 
L 1 

is available. The conformity

f the n th data sample x n is measured by the L 2 error between x n 
nd its rank- r surrogate 

 

(k ) 
n = ‖ x n − P 

(k −1) 
L 1 

P 

(k −1) T 

L 1 
x n ‖ 2 , n = 1 , . . . , N. (11)

e expect large d (k ) 
n if x n is an “outlier” and small d (k ) 

n if x n is a

ominal sample. Then the sample weight is defined as the inverse

f the distance 

 

(k ) 
n � (d (k ) 

n ) −1 , n = 1 , . . . , N, (12)

ollowed by normalization, 

˜ 

 

(k ) 
n = 

w 

(k ) 
n 

N ∑ 

n =1 

w 

(k ) 
n 

, n = 1 , . . . , N. (13)

hen computing the L 1 -subspace, data samples with larger weight

hould contribute more and samples with smaller weight should

e suppressed such that the resulting calculated L 1 -subspace is

ore accurate. Hence, in [19] we proposed that each data sample

 n is weighed by ˜ w 

(k ) 
n . We form a weight matrix 

˜ 

 

(k ) � 

⎡ 

⎢ ⎢ ⎢ ⎣ 

˜ w 

(k ) 
1 

0 0 . . . 

0 

˜ w 

(k ) 
2 

0 . . . 

. . . 

0 0 . . . ˜ w 

(k ) 
N 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(14) 

nd update the L 1 -subspace by solving 

 

(k ) 
L 1 

= arg max 
P ∈ R 

D ×r 

P 

T P = I r 

‖ (X ̃

 W 

(k ) ) T P ‖ 1 (15)

ith the BF algorithm. The approach automatically suppresses

utliers in each iteration, resulting in a sequence of re-

ned L 1 -subspaces. When ‖ w 

(k ) − w 

(k −1) ‖ 2 < ε, where w 

(k ) �
 w 

(k ) 
1 

, w 

(k ) 
2 

, . . . , w 

(k ) 
N 

] T and ε > 0 is a predefined threshold, the al-

orithm converges at a suboptimal rank- r subspace. It was demon-

trated that this iterative sample re-weighting technique leads to

ore robust subspace estimation [19] than the original one-time

 1 -subspace calculation. 

. Proposed L 1 -subspace tracking 

In this work, we propose an L 1 -subspace tracking algorithm for

treaming data. The proposed scheme is based on the BF technique

14] , [15] and the preliminary study on L -IRW [19] . 
1 
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The problem statement is the following. At time slot t − 1 , the

data matrix is X t−1 = { x t−1 ,n } N n =1 ∈ R 

D ×N , where x t−1 ,n ∈ R 

D repre-

sents the n th sample (column) of the data matrix at time-slot t − 1 .

Hereafter we use the same notation. Assume we obtained the fol-

lowing quantities at time-slot t − 1 : rank-1 subspace p 

c 
t−1 

∈ R 

D (or

rank- r subspace P 

c 
t−1 

∈ R 

D ×r ), the suboptimal binary vector b 

c 
t−1 

∈
{±1 } N (or binary matrix B 

c 
t−1 

∈ {±1 } N×r ), and the weight matrix

W 

c 
t−1 

= diag { w 

c 
t−1 , 1 

, . . . , w 

c 
t−1 ,N 

} , where w 

c 
t−1 ,n 

stands for the un-

normalized weight at convergence for x t−1 ,n , n = 1 , 2 , . . . , N. 2 At

time-slot t, t ≥ 2, a new datum x ∈ R 

D is acquired, and we aim at

updating p 

c 
t−1 

( P 

c 
t−1 

) to obtain p 

c 
t ( P 

c 
t ). A straight-forward method

is to incorporate the new datum in the old data matrix X t−1 and

re-run L 1 -IRW. Nevertheless, as more data are acquired, the size of

the data matrix keeps increasing. Moreover, L 1 -IRW with BF starts

from an arbitrarily initialized binary vector (or matrix), resulting in

slow convergence speed. 

Instead, our task is to find p 

c 
t ( P 

c 
t ) without solving L 1 -IRW in

(15) from scratch but by exploiting the results p 

c 
t−1 

( P 

c 
t−1 

), b 

c 
t−1 

( B 

c 
t−1 

), and W 

c 
t−1 

obtained in the previous time slot. In the follow-

ing subsections, we elaborate the rank-1 and rank- r ( r > 1) cases in

detail. 

3.1. Rank-1 L 1 -subspace tracking 

The proposed rank-1 L 1 -subspace tracking is outlined in

Algorithm 1 . The inputs are X t−1 , p 

c 
t−1 

, W 

c 
t−1 

, b 

c 
t−1 

, the new da-

tum x , and two positive parameters 0 < β < 1 and ε � 1. The out-

puts are the solutions at convergence for time-slot t : p 

c 
t , b 

c 
t , and

W 

c 
t . Algorithm 1 is executed every time a new datum is acquired,

updating the rank-1 L 1 -subspace on-the-fly. 

Algorithm 1 Rank-1 L 1 -subspace tracking. 

Input: X t−1 ∈ R 

D ×N , p 

c 
t−1 

∈ R 

D , W 

c 
t−1 

∈ R 

N×N , b 

c 
t−1 

∈ {±1 } N , x ∈ R 

D ,

0 < β < 1 , ε � 1 . 

1: p 

(0) 
t = p 

c 
t−1 

. 

2: Remove x t−1 ,i from X t−1 to obtain X t−1 /i ∈ R 

D ×(N−1) . 

3: X t ← [ X t/N = X t−1 /i x t,N = x ] . 

4: W 

(0) 
t/N 

← W 

c 
t−1 /i 

, b 

(0) 
t/N 

← b 

c 
t−1 /i 

. 

5: d (0) 
t,N 

← ‖ x t,N − p 

(0) 
t p 

(0) 
t 

T 
x t,N ‖ 2 . 

6: w 

(0) 
t,N 

← (d (0) 
t,N 

) −1 . 

7: ˜ w 

(0) 
t,n ← w 

(0) 
t,n / 

N ∑ 

n =1 

w 

(0) 
t,n , n = 1 , . . . , N. 

8: ˜ W 

(0) 
t ← diag { ̃  w 

(0) 
t, 1 

, . . . , ̃  w 

(0) 
t,N 

} . 
9: (p 

c 
t , b 

c 
t , W 

c 
t ) ← RANK1- L 1 REFINE (X t , p 

(0) 
t , W 

(0) 
t , ̃  W 

(0) 
t , b 

(0) 
t/N 

, β, ε) . 

Output: p 

c 
t , b 

c 
t , W 

c 
t . 

To avoid processing an enlarging data matrix, we adopt a fixed

processing window of N data samples. Before appending the new

datum x to data matrix X t−1 , one old datum is removed from

X t−1 . Assume that the i th datum is removed, 1 ≤ i ≤ N , and X t−1 /i �
{ x t−1 ,n } N 

n = 1 
n 	 = i 

∈ R 

D ×(N−1) denotes the sub-matrix of X t−1 that ex-

cludes the i th sample (column). Specifically, the index of the da-

tum to remove is selected by the following criterion: 

i = arg min 

1 ≤n ≤N 
w 

c 
t−1 ,n . (16)

In this way, we discard the datum with the minimum weight. Such

a datum is more likely to be the outlier than other samples, there-

fore its removal purifies the current data matrix. Then, we append
2 Initially at t = 1 , these quantities p c 1 ( P c 1 ), b 
c 
1 ( B c 1 ), and W 

c 
1 are obtained by L 1 - 

IRW in (15) with the initial data matrix X 1 . 

[  

fi

w  
he new datum x to X t−1 /i and form the new data matrix at time

 , X t � [ X t/N x t,N ] ∈ R 

D ×N , in which the first N − 1 columns are

 t/N = X t−1 /i , and the last column is the new datum x t,N = x . 

With the new data matrix X t , we re-formulate the k th iteration

f L 1 -IRW in (15) as 

 

(k ) 
t = arg max 

p ∈ R 

D 

‖ p ‖ 2 = 1 

‖ (X t ̃
 W 

(k ) 
t ) T p ‖ 1 , (17)

here ˜ W 

(k ) 
t is the normalized weight matrix for X t at iteration

 . Instead of solving (17) from scratch as the original L 1 -IRW

19] does, we aim at intelligently running the iterations and up-

ating p 

(k ) 
t till it converges to p 

c 
t . The key issue is to utilize the

vailable information: p 

c 
t−1 

, b 

c 
t−1 

, and W 

c 
t−1 

. 

First, with similar derivation in (7) , the problem in (17) is equiv-

lent to finding the binary vector 

 

(k ) 
t = arg max 

b ∈{±1 } N 
b 

T ˜ W 

(k ) T 

t X 

T 
t X t ̃

 W 

(k ) 
t b , (18)

r equivalently, 

max 
b (k ) 

t ∈ { ±1 } N 

{ 

b 

(k ) T 

t/N 
˜ W 

(k ) T 

t/N 
X 

T 
t/N X t/N ̃

 W 

(k ) 
t/N 

b 

(k ) 
t/N 

+ 2 b (k ) 
t,N ̃

 w 

(k ) 
t,N 

x 

T 
t,N X t/N ̃

 W 

(k ) 
t/N 

b 

(k ) 
t/N 

+ (b (k ) 
t,N 

) 2 ( ̃  w 

(k ) 
t,N 

) 2 x 

T 
t,N x t,N 

} 

, (19)

here the objective function in (18) is decomposed into three

erms, and the pursued binary vector b 

(k ) 
t = [ b (k ) 

t, 1 
, . . . , b (k ) 

t,N 
] T ∈

±1 } N is decomposed into two parts: b 

(k ) 
t/N 

= [ b (k ) 
t, 1 

, . . . , b (k ) 
t,N−1 

] T ∈
±1 } N−1 associated with the old data X t / N , and the last bit b (k ) 

t,N 
ssociated with the new datum x t,N . The normalized weight ma-

rix ˜ W 

(k ) 
t = diag { ̃  w 

(k ) 
t, 1 

, . . . , ̃  w 

(k ) 
t,N 

} is also decomposed into two parts:˜ 

 

(k ) 
t/N 

= diag { ̃  w 

(k ) 
t, 1 

, . . . , ̃  w 

(k ) 
t,N−1 

} associated with X t / N and 

˜ w 

(k ) 
t,N 

associ-

ted with x t,N . 

Second, initialize the rank-1 subspace in (17) by p 

(0) 
t = p 

c 
t−1 

.

ince the partial data X t / N of the current time-slot t are indeed

he partial data X t−1 /i from time-slot t − 1 , for which the con-

ergent weights and binary bits associated with p 

c 
t−1 

are avail-

ble, we can then initialize the weights and binary bits for X t / N 

s W 

(0) 
t/N 

= W 

c 
t−1 /i 

and b 

(0) 
t/N 

= b 

c 
t−1 /i 

, respectively. For the new da-

um x t,N , its distance to p 

(0) 
t and its weight are initialized by d (0) 

t,N 
=

 x t,N − p 

(0) 
t p 

(0) 
t 

T 
x t,N ‖ 2 and w 

(0) 
t,N 

= (d (0) 
t,N 

) −1 . Subsequently, the nor-

alized weights of all samples and the normalized weight ma-

rix are initialized as ˜ w 

(0) 
t,n = w 

(0) 
t,n / 

∑ N 
n =1 w 

(0) 
t,n , 1 ≤ n ≤ N , and 

˜ W 

(0) 
t =

iag { ̃  w 

(0) 
t, 1 

, . . . , ̃  w 

(0) 
t,N 

} . The above initialization is followed by a rank-

 L 1 -subspace refining function RANK1- L 1 REFINE described in

lgorithm 2 . 

In Algorithm 2 , the inputs of the function RANK1- L 1 REFINE are

 t , p 

(0) 
t , W 

(0) 
t , ˜ W 

(0) 
t , b 

(0) 
t/N 

, parameters 0 < β < 1 and ε � 1. The out-

uts of the function are the solutions at convergence p 

c 
t , b 

c 
t , W 

c 
t for

ime-slot t . 

It first initializes the single bit b (k ) 
t,N 

associated with the new da-

um by maximizing the objective function in (19) 

 

(0) 
t,N 

= arg max 
b∈{±1 } 

{ b 

(0) 
T 

t/N 
˜ W 

(0) 
T 

t/N 
X 

T 
t/N X t/N ̃

 W 

(0) 
t/N 

b 

(0) 
t/N 

+ 2 b ̃  w 

(0) 
t,N 

x 

T 
t,N X t/N ̃

 W 

(0) 
t/N 

b 

(0) 
t/N 

+ b 2 ( ̃  w 

(0) 
t,N 

) 2 x 

T 
t,N x t,N } 

= sgn { ̃  w 

(0) 
t,N 

x 

T 
t,N X t/N ̃

 W 

(0) 
t/N 

b 

(0) 
t/N 

} . (20)

hen the initial full binary vector can be formed as b 

(0) 
t =

 b 

(0) 
t/N 

; b (0) 
t,N 

] ∈ {±1 } N . Subsequently, the L 1 -subspace is iteratively re-

ned. In the k th iteration, BF is first executed to solve (18) for b 

(k ) 
t 

here the initial normalized weight matrix and binary vector are
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Algorithm 2 Function (p 

c 
t , b 

c 
t , W 

c 
t ) ← RANK1- L 1 REFINE (X t , p 

(0) 
t , 

W 

(0) 
t , ̃  W 

(0) 
t , b 

(0) 
t/N 

, β, ε) . 

Input: X t ∈ R 

D ×N , p 

(0) 
t ∈ R 

D , W 

(0) 
t ∈ R 

N×N , ˜ W 

(0) 
t ∈ R 

N×N , b 

(0) 
t/N 

∈ 

{±1 } N−1 , β , ε. 

1: Initialize b (0) 
t,N 

by (20). 

2: b 

(0) 
t ← [ b 

(0) 
t/N 

; b (0) 
t,N 

] . 

for k = 1 , 2 , . . . , do 

3: b 

(k ) 
t ← BF (b 

(k −1) 
t , X t , ̃

 W 

(k −1) 
t ) . 

4: p 

(k ) 
t ← X t ̃

 W 

(k −1) 
t b 

(k ) 
t / ‖ X t ̃

 W 

(k −1) 
t b 

(k ) 
t ‖ 2 . 

5: d (k ) 
t,n ← ‖ x t,n − p 

(k ) 
t p 

(k ) T 

t x t,n ‖ 2 , 1 ≤ n ≤ N. 

6: u (k ) 
t,n ← (d (k ) 

t,n ) 
−1 , update w 

(k ) 
t,n by (22), 1 ≤ n ≤ N. 

7: Check stopping criterion: if ‖ w 

(k ) 
t − w 

(k −1) 
t ‖ 2 < ε, then p 

c 
t ← 

p 

(k ) 
t , b 

c 
t ← b 

(k ) 
t , w 

c 
t ← w 

(k ) 
t , W 

c 
t ← W 

(k ) 
t . 

Exit. 

8: ˜ w 

(k ) 
t,n ← w 

(k ) 
t,n / 

N ∑ 

n =1 

w 

(k ) 
t,n , ̃

 W 

(k ) 
t ← diag { ̃  w 

(k ) 
t, 1 

, . . . , ̃  w 

(k ) 
t,N 

} . 
end for 

Output: p 

c 
t , b 

c 
t , W 

c 
t . 

W  

t  

t  

m  

c  

d

u

a

w

w  

p  

g  

n  

s  

w

k

k

T  

t  

p  

w  

q  

w  

a

3

 

L  

t  

a  

T  

Algorithm 3 Rank- r ( r > 1) L 1 -subspace tracking. 

Input: X t−1 ∈ R 

D ×N , P 

c 
t−1 

∈ R 

D ×r , W 

c 
t−1 

∈ R 

N×N , B 

c 
t−1 

∈ {±1 } N×r , x ∈ 

R 

D , 0 < β < 1 , ε � 1 . 

1: P 

(0) 
t = P 

c 
t−1 

. 

2: Remove x t−1 ,i from X t−1 to obtain X t−1 /i ∈ R 

D ×(N−1) . 

3: X t ← [ X t/N = X t−1 /i x t,N = x ] . 

4: W 

(0) 
t/N 

← W 

c 
t−1 /i 

, B 

(0) 
t/N 

← B 

c 
t−1 /i 

. 

5: d (0) 
t,N 

← ‖ x t,N − P 

(0) 
t P 

(0) 
t 

T 
x t,N ‖ 2 . 

6: w 

(0) 
t,N 

← (d (0) 
t,N 

) −1 . 

7: ˜ w 

(0) 
t,n ← w 

(0) 
t,n / 

N ∑ 

n =1 

w 

(0) 
t,n , n = 1 , . . . , N. 

8: ˜ W 

(0) 
t ← diag { ̃  w 

(0) 
t, 1 

, . . . , ̃  w 

(0) 
t,N 

} . 
9: (P 

c 
t , B 

c 
t , W 

c 
t ) ← RANK r - L 1 REFINE (X t , P 

(0) 
t , W 

(0) 
t , ̃  W 

(0) 
t , B 

(0) 
t/N 

, β, ε) . 

Output: P 

c 
t ∈ R 

D ×r , B 

c 
t ∈ {±1 } N×r , W 

c 
t ∈ R 

N×N . 

B  

t  

w  

A

P  

F  

e

P

w

B

I  

s  

s  

w  

t  

p  

t  

b

i  

s  

i  

f  

t  

P  

W

 

i  

t  

t

b

T  

[  

fi  

(  

d  
˜ 

 

(k −1) 
t and b 

(k −1) 
t , respectively. Then the updated b 

(k ) 
t is utilized

o update p 

(k ) 
t in a similar way as in (10) , followed by sample dis-

ance update as in (11) and sample weight update. Specifically, we

odify the weight update formula (12) as follows to guarantee a

onvergent weight sequence. Once the distance d (k ) 
t,n is obtained, we

efine 

 

(k ) 
t,n � (d (k ) 

t,n ) 
−1 (21) 

nd update the weight w 

(k ) 
t,n by 

 

(k ) 
t,n = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

w 

(k −1) 
t,n (1 − βk ) , if u 

(k ) 
t,n < w 

(k −1) 
t,n (1 − βk ) , 

u 

(k ) 
t,n , if w 

(k −1) 
t,n (1 − βk ) ≤ u 

(k ) 
t,n ≤ w 

(k −1) 
t,n (1 + βk ) , 

w 

(k −1) 
t,n (1 + βk ) , if u 

(k ) 
t,n > w 

(k −1) 
t,n (1 + βk ) 

(22) 

here 0 < β < 1 is a pre-defined parameter, and βk is the k th

ower of β . Intuitively, we avoid updating the weights too ag-

ressively by restricting the new weight w 

(k ) 
t,n to be within a small

eighborhood of the weight in the previous iteration w 

(k −1) 
t,n . The

ize of the neighborhood depends on β . The convergence of the

eight sequence can be verified by 

lim 

 →∞ 

βk = 0 , (23) 

lim 

 →∞ 

(w 

(k ) 
t,n − w 

(k −1) 
t,n ) = 0 . (24) 

hen we check the stopping criterion: if the L 2 -distance between

he updated weight vector w 

(k ) 
t � [ w 

(k ) 
t, 1 

, w 

(k ) 
t, 2 

, . . . , w 

(k ) 
t,N 

] T and the

revious one w 

(k −1) 
t � [ w 

(k −1) 
t, 1 

, w 

(k −1) 
t, 2 

, . . . , w 

(k −1) 
t,N 

] T is less than ε,

e exit the RANK1- L 1 REFINE function and returns the convergent

uantities p 

c 
t = p 

(k ) 
t , b 

c 
t = b 

(k ) 
t , w 

c 
t = w 

(k ) 
t , W 

c 
t = W 

(k ) 
t . Otherwise,

e update the normalized weights and weight matrix in step 8

nd continue with the iterations. 

.2. Rank- r ( r > 1) L 1 -subspace tracking 

We extend the rank-1 L 1 -subspace tracking to rank- r ( r > 1)

 1 -subspace tracking in Algorithm 3 . In contrast to Algorithm 1 ,

he inputs of Algorithm 3 are: the rank- r subspace P 

c 
t−1 

∈ R 

D ×r ,

nd the binary matrix B 

c 
t−1 

∈ {±1 } N×r obtained at time-slot t − 1 .

he outputs are: the rank- r subspace P 

c ∈ R 

D ×r , the binary matrix
t 
 

c 
t ∈ {±1 } N×r , and the weight matrix W 

c 
t ∈ R 

N×N at convergence at

ime-slot t . Steps 1 to 3 initialize P 

(0) 
t and construct X t in a similar

ay as in Algorithm 1 . While Algorithm 1 iteratively solves (17) ,

lgorithm 3 iteratively solves the following problem 

 

(k ) 
t = arg max 

P ∈ R 

D ×r 

P 

T P = I r 

‖ (X t ̃
 W 

(k ) 
t ) T P ‖ 1 . (25)

ollowing the derivation in (9) , the above maximization problem is

quivalent to 

 

(k ) 
t = arg max 

P ∈ P 

D ×r 

P 

T P = I r 

max 
B ∈{±1 } N×r 

tr (BP 

T X t ̃
 W 

(k ) 
t ) , (26) 

hich is equivalent to solving 

 

(k ) 
t = arg max 

B ∈{±1 } N×r 
‖ X t ̃

 W 

(k ) 
t B ‖ ∗. (27) 

n (26) , the optimal n th row of binary matrix B is given by b 

opt 
n =

gn { P 

T x t,n ̃  w 

(k ) 
t,n } ∈ {±1 } r , that is, projecting the weighted n th data

ample onto the rank- r subspace P , followed by a sign operation,

hich means that the n th row of B ( b n ∈ { ± 1} r ) is associated with

he n th data sample x t,n . Hence, in rank- r L 1 -subspace tracking, the

artial data matrix X t / N are associated with the partial binary ma-

rix B t / N , which represents an (N − 1) × r binary matrix formed

y removing the N th row of B t . In step 4 of Algorithm 3 , B t / N 

s initialized by B 

c 
t−1 /i 

, the convergent binary matrix from time-

lot t − 1 excluding the i th row. Steps 5–8 are similar to those

n Algorithm 1 , which initialize the weights and weight matrix

or data samples. In step 9, the rank- r L 1 -subspace refining func-

ion RANK r - L 1 R EFINE is called to generate the rank- r subspace

 

c 
t ∈ R 

D ×r , the binary matrix B 

c 
t ∈ {±1 } N×r , and the weight matrix

 

c 
t ∈ R 

N×N at convergence. 

The function RANK r - L 1 REFINE is outlined in Algorithm 4 . The

nputs and outputs are similar to those in Algorithm 3 . It first ini-

ializes the N th row of B t (denoted as a column vector b t,N ∈ { ± 1} r ,

he r binary bits associated with the new datum) as 

 

(0) 
t,N 

= arg max 
b ∈{±1 } r 

‖ X t B 

(0) 
t ‖ ∗ = 

∥∥∥∥[ X t/N x t,N ] 

[
B 

(0) 
t/N 

b 

T 

]∥∥∥∥
∗
. (28) 

hen the initial full binary matrix can be formed as B 

(0) 
t =

 B 

(0) 
t/N 

; b 

(0) T 

t,N 
] . Subsequently, the L 1 -subspace P 

(k ) 
t is iteratively re-

ned. In the k th iteration, BF is first executed (step 3) to solve

27) for B 

(k ) 
t where the initial binary matrix is B 

(k −1) 
t . Then the up-

ated B 

(k ) is utilized to update P 

(k ) (steps 4 and 5). Steps 6–9 are
t t 
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Algorithm 4 Function (P 

c 
t , B 

c 
t , W 

c 
t ) ← RANK r - L 1 REFINE (X t , P 

(0) 
t , 

W 

(0) 
t , ̃  W 

(0) 
t , B 

(0) 
t/N 

, β, ε) . 

Input: X t ∈ R 

D ×N , P 

(0) 
t ∈ R 

D , W 

(0) 
t ∈ R 

N×N , ˜ W 

(0) 
t ∈ R 

N×N , B 

(0) 
t/N 

∈ 

{±1 } (N−1) ×r , β , ε. 

1: Initialize b 

(0) 
t,N 

by (28). 

2: B 

(0) 
t ← [ B 

(0) 
t/N 

; b 

(0) T 

t,N 
] . 

for k = 1 , 2 , . . . , do 

3: B 

(k ) 
t ← BF (B 

(k −1) 
t , X t , ̃

 W 

(k −1) 
t ) . 

4: (U 

(k ) 
t , S (k ) 

t , V 

(k ) 
t ) ← SVD (X t ̃

 W 

(k −1) 
t B 

(k ) 
t ) . 

5: P 

(k ) 
t ← [ U 

(k ) 
t ] : , 1: r V 

(k ) T 

t . 

6: d (k ) 
t,n ← ‖ x t,n − P 

(k ) 
t P 

(k ) T 

t x t,n ‖ 2 , 1 ≤ n ≤ N. 

7: u (k ) 
t,n ← (d (k ) 

t,n ) 
−1 , update w 

(k ) 
t,n by (22), 1 ≤ n ≤ N. 

8: Check stopping criterion: if ‖ w 

(k ) 
t − w 

(k −1) 
t ‖ 2 < ε, then P 

c 
t ← 

P 

(k ) 
t , B 

c 
t ← B 

(k ) 
t , w 

c 
t ← w 

(k ) 
t , W 

c 
t ← W 

(k ) 
t . 

Exit. 

9: ˜ w 

(k ) 
t,n ← w 

(k ) 
t,n / 

N ∑ 

n =1 

w 

(k ) 
t,n , 

˜ W 

(k ) 
t ← diag { ̃  w 

(k ) 
t, 1 

, . . . , ̃  w 

(k ) 
t,N 

} . 
end for 

Output: P 

c 
t , B 

c 
t , W 

c 
t . 
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b  

N  

p  

t  

β  

t  

d  

v

 

s  

t  

o  

r  

4  

t  

w  

s  

t  

0  

b  

s  

d

l  

F  

r  

l  

e  

f

4

w  

A  

s  

f  

t  

j

 

u  

c  

c

x  

C

X  

w  

[  

m  

p  

c  

Ẑ  

a  

1  

s  

e  

N

 

B  

s  

i  

g  

p  

a  
the same as steps 5–8 in Algorithm 2 , with P 

(k ) 
t , P 

c 
t , B 

(k ) 
t , and B 

c 
t 

replacing p 

(k ) 
t , p 

c 
t , b 

(k ) 
t , and b 

c 
t . 

4. Applications and experimental studies 

In this section, we assess the effectiveness of the proposed

L 1 -subspace tracking algorithm through four experimental stud-

ies: (i) synthetic data example, (ii) moving objects detection from

streaming surveillance videos, (iii) robust online cooperative spec-

trum sensing in a cognitive radio network, and (iv) DoA tracking.

We compare the proposed method (named “L 1 -Tracking”) with the

batch L 1 -PCA [13] (named “L 1 -Batch”), the L 1 -IRW [19] , the batch

L 2 -PCA (named “L 2 -Batch”), the GRASTA [27] , the PracReProCS [31] ,

and the OMoGMF [32] schemes, in terms of performance and ex-

ecution time. All the experiments in this work were implemented

on a personal computer with i7 CPU and 16G RAM. 

4.1. Synthetic data example 

We create a synthetic data example to evaluate the perfor-

mance of the proposed online L 1 -subspace tracking algorithm in

controlled conditions and to assess the impact of design parame-

ters N and β . 

We generate random streaming measurements of x t , t = 1 , 2 , . . .

from a rank-4 subspace in R 

100 , spanned by the columns of a

random matrix P true ∈ R 

100 ×4 that has orthonormal columns. The

measurement x t is corrupted by outliers with probability 0.3, that

is, x t = P true a t + s t , where a t are Gaussian random vectors in R 

4 ,

and s t ∈ R 

100 are outlier vectors with nonzero Gaussian random

coefficients in 50% of their entries. We apply the proposed L 1 -

racking to estimate the underlying rank-4 subspace P true , and

evaluate the performance in terms of the subspace estimation er-

ror between the updated subspace P 

(k ) 
t and the true subspace P true ,

which is defined as [28] 

Error t = 

‖ P 

(k ) 
t P 

(k ) † 

t − P true P 

† 
true ‖ F 

‖ P true P 

† 
true ‖ F 

, (29)

where † and ‖ · ‖ F stands for the pseudo-inverse and the Frobenius-

norm of a matrix. 
Fig. 1 (a) shows the subspace estimation error versus the num-

er of new data samples, for different processing-window size

 = 20 , 30 , and 40. The subspace is initialized with N data sam-

les, and is updated as P 

c 
t ∈ R 

100 ×4 at the arrival of every new da-

um x t , t = 1 , 2 , . . . , 200 . The weight update parameter is fixed at

= 0 . 5 . It is observed that for all N values, the subspace estima-

ion error decreases as the subspace is being updated with new

ata samples. In particular, a smaller N value leads to faster con-

ergence rate. 

In Fig. 1 (b), for a fixed processing-window size N = 20 , the sub-

pace estimation error when updating the subspace at time-slot

 = 15 using the 15th new datum is evaluated versus the number

f iterations k for weight update for various values of design pa-

ameter β = 0 . 1 , 0 . 3 , 0 . 5 , and 0.7. As specified in Algorithms 2 and

 , 0 < β < 1 is an input parameter in the L 1 -subspace refining func-

ions RANK1- L 1 REFINE and RANK r - L 1 REFINE. As described in the

eight update Eq. (22) , the new weight w 

(k ) 
t,n is confined to a

mall neighborhood centered at the weight in the previous itera-

ion w 

(k −1) 
t,n , and βk w 

(k −1) 
t,n is the radius of the neighborhood. Since

 < β < 1, the weight update procedure is guaranteed to converge

y Eqs. (23) and (24) . When β → 0, the neighborhood is infinitely

mall and the weight update terminates after one iteration. In ad-

ition, a larger β leads to slow convergence while a smaller β
eads to fast convergence, which is demonstrated in Fig. 1 (b). In

ig. 1 (b), as expected, β = 0 . 1 leads to fast convergence and the

esulting P 

c 
t is still far away from P true , while β = 0 . 5 and β = 0 . 7

ead to slower convergence rate but they achieve lower subspace

stimation error. The estimation error Error t at convergence for dif-

erent β values are labeled on the curves. 

.2. Moving objects detection from streaming surveillance videos 

Consider a sequence of surveillance video frames X t ∈ R 

m ×n 

ith frame resolution of m × n pixels and time index t = 1 , 2 , . . . .

 typical surveillance video sequence is consisted of a background

cene that can be modeled as a low-rank component, and sparse

oreground moving objects superimposed on the background scene

hat are regarded as the outliers. For security monitoring, the ob-

ective is to extract the moving objects. 

Each video frame X t is vectorized as x t ∈ R 

D , D = m × n via col-

mn concatenation. We model the background scene as a low-rank

omponent z t ∈ R 

D and the foreground moving objects as a sparse

omponent s t ∈ R 

D . Hence, 

 t = z t + s t , t = 1 , 2 , . . . . (30)

onsider a group of N frames, the matrix-form representation is 

 = Z + S , (31)

here X = [ x 1 , . . . , x N ] ∈ R 

D ×N , Z = [ z 1 , . . . , z N ] ∈ R 

D ×N , and S =
 s 1 , . . . , s N ] ∈ R 

D ×N . To extract the low-rank background, a simple

ethod is to run rank-1 L 1 -Batch on X and obtain the L 1 -subspace

 L 1 
∈ R 

D , or to run L 1 -IRW and obtain the L 1 -subspace p 

c 
L 1 

∈ R 

D at

onvergence. Afterwards, the background can be approximated by
 

 = p L 1 
p 

T 
L 1 

X (or ̂  Z = p 

c 
L 1 

p 

c T 

L 1 
X ) and the foreground can be extracted

s ̂  S = X −̂ Z . For our proposed L 1 -Tracking, we initialize the rank-

 subspace p 

c 
0 

with the initial N = 8 frames using L 1 -IRW. Sub-

equently, we update the subspace p 

c 
t ∈ R 

D at the arrival of ev-

ry new frame x t , t = 1 , 2 , . . . . We keep the processing window at

 = 8 . 

We first test the proposed L 1 -Tracking, the L 1 -IRW, and the L 1 -

atch algorithms on a subset of 80 frames from the Lobby video

equence. Each frame is of 128 × 160 pixels. This is a challeng-

ng video sequence since there is illumination change in the back-

round. The processing window is N = 8 for all schemes in com-

arison. Fig. 2 displays the background and foreground extracted

t multiple distinct time slots t = 10 , 13 , 30 , 51 , 54 by the proposed



Y. Liu, K. Tountas and D.A. Pados et al. / Pattern Recognition 97 (2019) 106992 7 

Fig. 1. (a) Subspace estimation error with different processing-window size N = 20 , 30 , and 40. The sample-weight update parameter is fixed at β = 0 . 5 . (b) Subspace 

estimation error with different sample-weight update parameter β = 0 . 1 to 0.7. The processing-window size is fixed at N = 20 . 
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3 H † is the pseudo-inverse of H . 
 1 -Tracking, the L 1 -IRW [19] , and the regular L 1 -Batch [13] meth-

ds. Fig. 2 .(a) shows the original frames, where the background is

right for t = 10 , 13 , and is dark for the remaining three frames.

n frames t = 10 , 30 , 51 , 54 , a person appears in the scene as a

oving object. From Fig. 2 .(b1), we observe that the proposed L 1 -

racking successfully recovers the background and adapts to the

llumination change. The corresponding extracted foreground in

rayscale is displayed in Fig. 2 .(c1), and the binary masks for the

etected moving objects are displayed in Fig. 2 .(d1). In contrast,

he L 1 -IRW and L 1 -Batch cannot accurately recover the background

cenes ( Fig. 2 .(b2)(b3)), which cause “ghost” phenomenon in the

xtracted grayscale foreground scenes ( Fig. 2 .(c2)(c3)), and the bi-

ary masks ( Fig. 2 .(d3)). 

Besides, we run the proposed L 1 -Tracking algorithm on the

omplete Lobby video sequence of 1546 frames, and compare its

eceiver operating characteristic (ROC) curve with those generated

y the GRASTA [27] , PracReProCS [31] , and OMoGMF [32] algo-

ithms. For a fair comparison, for all four schemes we use the

rst N = 8 frames for subspace initialization, and the remaining

538 frames for online subspace update. For fast convergence, the

ample weight update parameter is set as β = 0 . 5 for the pro-

osed L 1 -Tracking. For OMoGMF, a mixture of 2 Gaussians is used

o model the foreground. As shown in Fig. 3 (a), our proposed

 1 -Tracking achieves the highest true positive rate (TPR) under

he same false positive rate (FPR) compared to the other three

chemes. Fig. 3 (b) shows the accumulated execution time for all

our subspace tracking methods as the new frame index increases.

ompared to PracReProCS, the proposed L 1 -Tracking, the GRASTA,

nd the OMoGMF methods have significant saving in execution

ime. 

.3. Robust cooperative spectrum sensing in cognitive radio networks 

Radio frequency spectrum is a scarce resource in wireless com-

unications due to the ever-increasing wireless channel users.

pectrum-sensing cognitive radio is a technique that allows sec-

ndary users to detect the idle spectrum and share the wire-

ess channel with primary users in an opportunistic manner [35] .

e consider the robust cooperative spectrum sensing problem

n a cognitive radio network (CRN) when malicious attacks exist

36,37] . The CRN in Fig. 4 consists of a primary user (PU), multiple

econdary users (SUs) and a fusion center. The PU transmits sig-

als on the wireless channel and the SUs monitor the PU’s status

presence or absence). At time-slot t , the received PU signal power
dB) at the m th SU can be expressed as 

 m,t = �t + α10 log 10 (d 0 /d m 

) + o m,t dB , (32)

here �t is the PU transmission power (in dB) at time-slot t, α is

he path-loss exponent, d 0 is the reference distance, and d m 

is the

istance between the PU and the m th SU which is measured prior

ia geo-location database. The parameters �t and α are unknown

t the fusion center and need to be estimated. When attackers at-

ack the m th SU at time t , the received signal y m,t has an extra

dditive component o m,t (dB), which is considered as the outlier.

ll SUs send their sensed signal y m,t to the fusion center. The ob-

ective of the fusion center is to recover the transmission power

t , t = 1 , 2 , . . . reported by the SUs, compare it with a threshold

nd determine whether the PU exists or not. 

Consider M SUs and sensing time slots t = 1 , 2 , . . . , N,

efine matrices H M×2 � [ 1 1 . . . 1 
β1 β2 . . . βM 

] T and X 2 ×N �

 

�1 �2 ... �N 
α α α α

] , in which βm 

� 10log 10 ( d 0 / d m 

), then the data

t the fusion center collected in the period of N time slots can

e modeled as Y = HX + O ∈ R 

M×N , where the ( m, t )th entry of

he outlier matrix O is o m,t . Define L � HX , then Y = L + O . Since

ank( H ) ≤ 2 and rank( X ) ≤ 2, we have rank( L ) ≤ 2. 

To solve the power estimation problem in the presence of out-

ier O , we can apply L 1 -Batch to data matrix Y and estimate the

ank-2 subspace P L 1 
∈ R 

M×2 in which the low-rank matrix L lies,

hat is, 

 L 1 = arg max 
P ∈ R 

M×2 

P 

T P = I 

‖ Y 

T P ‖ 1 . (33)

hen L and X can be recovered by ̂  L = P L 1 
P 

T 
L 1 

Y and 

̂ X = H 

† ̂ L 3 , re-

pectively. In the sequel, the PU transmission power (in dB) can be

btained from the first row of ̂ X , which is ̂ � = [ ̂  �1 , ̂
 �2 , . . . , ̂

 �N ] 
T . 

In our study, we run 100 independent experiments, and each

xperiment has N total = 60 snapshots. The reference distance d 0 is

0 m , pathloss coefficient is set to α = 4 , and M = 40 SUs are de-

loyed. The PU transmission power is uniformly distributed be-

ween 10 0 0 Watt and 110 0 Watt, such that 30dB ≤�t ≤ 30.4139dB,

nd the distance between the PU and the m th SU is uniformly

istributed between 5km and 6km. We fix the attack amplitude

rom all attackers to be 20dB, and 8% of the sensed signals are
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Fig. 2. The subset of Lobby sequence (80 frames): (a) Original frame of time slot t = 10 , 13 , 30 , 51 , and 54; reconstructed background by (b1) proposed L 1 -Tracking, (b2) 

L 1 -IRW, and (b3) L 1 -Batch; gray-scale extracted moving objects by (c1) proposed L 1 -Tracking, (c2) L 1 -IRW, and (c3) L 1 -Batch; and binary mask by (d1) proposed L 1 -Tracking, 

(d2) L 1 -IRW, and (d3) L 1 -Batch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

The average power estimation error and accumulated subspace tracking time of six 

algorithms in comparison. 

w  

s  

σ
 

s  
attacked randomly. We compare the performance of our proposed

L 1 -Tracking with L 1 -Batch, L 1 -IRW, GRASTA [27] , PracReProCS [31] ,

and OMoGMF [32] . The weight update parameter of the proposed

L 1 -Tracking is set as β = 0 . 5 . For L 1 -Batch and L 1 -IRW, the 60 snap-

shots are divided into 6 groups of N = 10 snapshots, and an inde-

pendent L 1 -Batch or L 1 -IRW subspace is computed for each group,

followed by power estimation. For the proposed L 1 -Tracking, we

initialize the L 1 -subspace and the associated binary bit matrix with

the initial N = 10 snapshots. Then we keep the processing window

size at N = 10 , with every collected new snapshot y t ∈ R 

M , we up-

date the L 1 -subspace P 

c 
t ∈ R 

M×2 , t = N + 1 , N + 2 , . . . , N total . Corre-

spondingly, ̂ � t = P 

c 
t P 

c T 
t y t , ̂ x t = H 

† ̂ � t = [ ̂  �t , ̂  αt ] 
T . The recovered PU

transmission power at time-slot t is ̂ �t . 

The power estimation error over a period of N = 10 time slots

is calculated as the following: 

σN = ‖ ̂

 � − �‖ 2 / ‖ �‖ 2 , (34)
here ̂ � is the estimated PU transmission power (in dB). For all

chemes in comparison, we calculate the average σ N (denoted as
ave 
N 

) with N total = 60 snapshots and 100 experiments. 

Table 1 shows the accumulated subspace update time mea-

ured in seconds and the average power estimation error for the
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Fig. 3. Comparison studies of the proposed L 1 -Tracking, the GRASTA [27] , the PracReProCS [31] , and the OMoGMF [32] algorithms on the complete Lobby sequence (1546 

frames): (a) the ROC curves; (b) the accumulated subspace update time in seconds versus the new frame index t . 

Fig. 4. Cooperative cognitive radio network structure. 
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ix algorithms in comparison. The two lowest average power es-

imation error are highlighted in red, which are offered by the

roposed L 1 -Tracking and the L 1 -IRW methods. Although L 1 -IRW

lightly outperforms L 1 -Tracking in power estimation error, its

uge processing time is inappropriate for real-time scenarios. On

he other hand, although the GRASTA and OMoGMF algorithms

xcel in subspace update speed, their power estimation error re-

ulted from inaccurate subspace estimation is much higher than

he proposed L 1 -Tracking scheme. 

.4. Direction-of-arrival tracking 

A core technical problem in wireless communications and radar

pplications is the problem of estimating the direction-of-arrival

DoA) of incoming signals [38,39] . Our signal model is similar to

hose in [13] and [16] . We consider a receiver equipped with a

niform linear array (ULA) of M antenna elements, and d is the

pacing between adjacent antenna elements. For an incoming far-

eld signal with angle-of-arrival θi ∈ (−π
2 , 

π
2 ] and wavelength λc ,

he complex-domain array response vector is defined as 

 θi 
� 

[ 
1 , e − j 

2 πd sin θi 
λc , . . . , e − j 

(M−1)2 πd sin θi 
λc 

] T 
∈ C 

M . (35)

o satisfy the Nyquist spatial sampling theorem, d is chosen to be

alf the signal wavelength d = 

1 
2 λc . For simplicity, we define 

f � 0 . 5 sin (−θ ) , (36)
i i 
hen the array response vector becomes 

 f i 
= [1 , e j1 ·2 π f i , e j2 ·2 π f i , . . . , e j(M−1) ·2 π f i ] T ∈ C 

M . (37)

In our signal model, the ULA takes snapshots of two incoming

ignals (targets) with angles-of-arrival θ1 and θ2 , and the associ-

ted f 1 and f 2 can be obtained by (36) . The number of antenna

lements is M = 20 . The snapshot at time-slot t is expressed as 

 t = A 1 s f 1 + A 2 s f 2 + n t , t = 1 , 2 , . . . , (38)

here A 1 , A 2 are the received-signal amplitudes, and n t ∼
N (0 M 

, σ 2 I M 

) is additive white complex Gaussian noise. Therefore,

he nominal signal lies in a rank-2 subspace formed by s f 1 and s f 2 .

e assume that the signal-to-noise ratio (SNR) of the two signals

s SNR 1 = 10 log 10 
A 2 

1 

σ 2 dB = 4 dB and SNR 2 = 10 log 10 
A 2 

2 

σ 2 dB = 5 dB . For

he first ten snapshots x t , t = 1 , . . . , 10 , f 1 and f 2 are fixed at 0.2

nd 0.3, respectively, and x 5 is corrupted by an interferer signal

 J = A J s J with f J = 0 . 4 and amplitude A J = A 2 , that is, 

 5 = A 1 s f 1 + A 2 s f 2 + x J + n 5 . (39)

hen, starting from t = 11 , due to gradual change of θ1 and θ2 ,

 1 and f 2 become linearly time varying [40] . They start at 0.2 and

.3, cross at 0.25, and finish at 0.3 and 0.2 over a span of 10 0 0

napshots. This causes the gradual change of the underlying rank-2

ignal subspace. Besides, the same interferer signal x J corrupts x t 
ith probability p = 0 . 3 for t = 11 , 12 , . . . , 1010 . 
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Fig. 5. MUSIC spectra with rank-2 subspaces at time-slot (a) t = 141 , (b) t = 221 , and (c) t = 323 . 
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Our objective is to track the slowly changing rank-2 subspace

formed by the two incoming signals, that is, to track the varying

angles-of-arrival θ1 and θ2 , or equivalently, to track the varying

f 1 and f 2 . For each snapshot, we create a real-valued version ̃

 x t =
[ Re { x t }; Im { x t } ] ∈ R 

2 M by Re{ · }, Im{ · } part concatenation. For our

proposed L 1 -Tracking, we initialize the rank-2 L 1 -subspace by the

initial N = 10 snapshots, using the L 1 -IRW scheme. Subsequently,

we update the L 1 -subspace P 

c 
t ∈ R 

2 M×2 at the arrival of every two

new snapshots. 

We compared the proposed scheme with L 1 -Batch and L 2 -Batch.

The processing window is fixed at N = 10 for all three schemes.

For L 1 -Batch and L 2 -Batch, we re-calculate a new rank-2 subspace

for every other time slot. At time slot t , a data matrix is formed

by ˜ X t = [ ̃  x t−N+1 , ̃  x t−N+2 , . . . , ̃  x t ] ∈ R 

2 M×N , on which the batch rank-
 L 1 -PCA (9) and L 2 -PCA (4) are performed to obtain P t,L 1 
∈ R 

2 M×2

nd P t,L 2 
∈ R 

2 M×2 , respectively. For performance evaluation, we

lot for all three schemes the MUSIC spectrum [13] : 

 ( f ) � 

1 ˜ s T 
f 
(I 2 M 

− PP 

T ) ̃  s f 
, (40)

here ̃  s f = [ Re { s f }; Im { s f } ] ∈ R 

2 M , P ∈ R 

2 M×2 is the learned rank-

 subspace, and P = P 

c 
t , P = P t,L 1 

, P = P t,L 2 
for the proposed L 1 -

racking, L 1 -Batch, and L 2 -Batch, respectively. For successful DoA

stimation schemes, the MUSIC spectrum shall show high peaks at

ominal DoAs f 1 and f 2 , and suppresses other signals. 

In Fig. 5 , we plot the MUSIC spectra for all three schemes at

ime-slot t = 141 , 221 , and 323, respectively. The true f 1 , f 2 and

 J are indicated by the vertical dotted lines in the figures. We
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bserve that as time elapses, L 1 -Batch and the proposed L 1 -

racking algorithms are able to track the changing rank-2 sub-

paces and show peaks very close to the two nominal signals f 1 
nd f 2 , while L 2 -Batch MUSIC spectrum is severely contaminated

y the interferer signal at f J . Besides, the proposed L 1 -Tracking

utperforms L 1 -Batch since it well suppresses the interferer at f J ,

hile L 1 -Batch still shows a small peak at f J . Further, the proposed

 1 -Tracking accelerates the DoA tracking speed. In our experiment,

he average subspace update time for the proposed L 1 -Tracking al-

orithm is 0.0313 s per snapshot, and that for the L 1 -Batch algo-

ithm is 0.0514 s per snapshot. 

. Complexity analysis 

In this section, we analyze the theoretical computational com-

lexity in terms of multiplication operations for the proposed

 1 -Tracking algorithm, the GRASTA, OMoGMF, and PracReProCS.

ur findings are in accordance with the experimental results in

ections 4.2 and 4.3 . 

We assume that the data sample dimension is D , and the

rocessing window size is N for the proposed L 1 -Tracking. The

omplexity of the proposed rank-1 L 1 -Tracking is analyzed in

able 2 . At the arrival of the t th new datum x t ∈ R 

D , the major

omputational tasks to update the subspace p 

c 
t ∈ R 

D include: (1)

lgorithm 1 Steps 5–7 that calculate the weight for the new da-

um, the complexity of which is O (D + N) ; (2) Algorithm 2 Step 3

hat executes bit flipping to update b 

(k ) 
t ∈ {±1 } N , the complexity of

hich is O ( DN 

2 × maxFlip), where maxFlip represents the number

f bit flips for the BF procedure to converge; (3) Algorithm 2 Step

 that re-calculates the subspace; and (4) Algorithm 2 Step 5 that

pdates the distance for N data samples. Let maxIter represent the

umber of sample-weight update iterations, then the total com-

lexity of rank-1 subspace update is O ( DN 

2 × maxFlip × maxIter). 

The complexity of the proposed rank- r ( r > 1) L 1 -Tracking is

nalyzed in Table 3 . The major computational tasks include: (1)

lgorithm 3 Steps 5–7 that calculate the weight for the new da-

um and normalize the weights for all N data samples in the

urrent processing window, with complexity O (2 Dr + D + N) ; (2)

lgorithm 4 Step 1 that initializes the r bits associated with
Table 2 

The computational complexity of the proposed rank-1 

L 1 -Tracking described in Algorithms 1 and 2 . 

Computational tasks Complexity (Multiplications) 

Algo. 1 Steps 5–7 O (D + N) 

Algo. 2 Step 3 O ( DN 2 × maxFlip) 

Algo. 2 Step 4 O ( DN ) 

Algo. 2 Step 5 O ( DN ) 

Algo. 2 Step 6 O ( N ) 

Algo. 2 Step 7 O ( N ) 

Algo. 2 Step 8 O ( N ) 

Total O ( DN 2 × maxFlip × maxIter) 

Table 3 

The computational complexity of the proposed rank- r ( r > 1) L 1 - 

Tracking described in Algorithms 3 and 4 . 

Computational tasks Complexity (Multiplications) 

Algo. 3 Steps 5–7 O (2 Dr + D + N) 

Algo. 4 Step 1 O (2 r Dr 2 ) 

Algo. 4 Step 3 O ( DNr 3 × maxFlip) 

Algo. 4 Step 4 O ( Dr 2 ) 

Algo. 4 Step 5 O ( Dr 2 ) 

Algo. 4 Step 6 O ( DNr ) 

Algo. 4 Step 7 O ( N ) 

Algo. 4 Step 8 O ( N ) 

Algo. 4 Step 9 O ( N ) 

Total O 

((
DNr 3 × maxFlip + 2 r Dr 2 

)
× maxIter 

)
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o  
he new datum by exhaustive search over the 2 r -dimensional bi-

ary space, with complexity O (2 r Dr 2 ); (3) Algorithm 4 Step 3

hat executes BF to update the N × r bit matrix, with complexity

 ( DNr 3 × maxFlip). Again maxFlip is the number of bit flips re-

uired for the BF to converge; (4) Algorithm 4 Step 4 that performs

VD with complexity O ( Dr 2 ); (5) Algorithm 4 Step 5 that updates

he subspace with complexity O ( Dr 2 ); and (6) Algorithm 4 Step 6

hat updates the distances for N data samples in the current pro-

essing window with complexity O ( DNr ). Again, let maxIter be the

umber of iterations for sample weights to converge, then the total

omplexity for rank- r ( r > 1) case is O ((DNr 3 × maxFlip + 2 r Dr 2 ) ×
axIter ) . 

Empirically, for both rank-1 and rank- r , maxFlip < 10 or even

quals to 1 with large chances. This is because for rank-1, the

F in the k th iteration is initialized with b 

(k −1) 
t , the bit vector

n the (k − 1) th weight-update iteration; while for rank- r , the BF

n the k th iteration is initialized with the bit matrix B 

(k −1) 
t in

he (k − 1) th weight-update iteration. Such “warm-start” technique

ignificantly accelerates the convergence of the BF procedure. 

The GRASTA [27] minimizes a cost function that has an � 1 -norm

enalty on the sparse outliers. Then the subspace tracking is for-

ulated as minimizing an augmented Lagrangian function, which

s solved by alternating between solving for four variables: the

ank- r subspace coefficient of length r , the sparse outlier vector of

ength D , the Lagrange multiplier of length D , and the columns of

 D × r matrix that span the rank- r subspace. The complexity is in

he order of O (r 3 + Dr) , where O ( r 3 ) is the complexity of the inver-

ion of an r × r matrix in solving for the subspace coefficients, and

 ( Dr ) is the complexity of a matrix-vector multiplication involved

n updating all four variables. 

In PracReProCS [31] , the subspace tracking includes four steps:

) perpendicular projection of the new datum onto the space or-

hogonal to the previously estimated rank- r subspace, with com-

lexity O ( D 

2 ); 2) sparse outlier vector recovery by � 1 -norm mini-

ization, with complexity O ( D 

3 ); 3) low-rank component recovery

ith subtraction operations only; and 4) subspace update by the

ethod of projection PCA, which involves an SVD of complexity

 ( DN min { D, N }), in which the most recent N data samples are uti-

ized. 

The OMoGMF [32] deals with the background subtraction prob-

em in video surveillance by modeling the video background as

 low-rank component and performs low-rank matrix factoriza-

ion. More importantly, it models the foreground as a mixture of

aussians (MoG). The online low-rank subspace learning problem

s then tackled by iteratively solving for the MoG parameters, the

ubspace coefficients, and the subspace. The MoG parameters are

olved by the EM algorithm, in which the E-step is of complex-

ty O (D (r + K)) where D is the dimension of the datum (a video

rame in [32] ), r is the subspace rank, and K is the number of

omponents in the MoG model, and the M-step is of complexity

 ( DK ). The subspace coefficients are of size r × 1 for a datum and

t is solved by a least squares problem with complexity O (Dr + r 3 ) .

inally, updating the subspace of dimension D × r has complexity

 ( Dr 2 ). 

We compare the computational complexity in terms of multipli-

ation operations for the proposed L 1 -Tracking, GRASTA, OMoGMF,

nd PracReProCS algorithms in Table 4 . For OMoGMF, “Iter” refers

o the number of iterations for the EM algorithm to calcu-

ate the MoG parameters. In practice, the rank value is usually

 � min { D, N }. Besides, for the proposed L 1 -Tracking, we adopt a

mall processing-window size N for lower complexity and faster

onvergence rate according to the synthetic data experiment in

ection 4.1 , and we use a medium β value for sample-weight up-

ate to control maxIter. We also consider the fact that maxFlip < 10

r equals to 1 most of the time. With these conditions, it is

bserved from Table 4 that GRASTA has the lowest complexity,
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Table 4 

Computational complexity comparison among GRASTA, OMoGMF, the proposed L 1 -Tracking, and PracRe- 

ProCS. 

GRASTA OMoGMF Proposed L 1 -Tracking PracReProCS 

O (Dr + r 3 ) O 
(
(Dr + DK) × Iter r = 1 : O ( DN 2 × maxFlip × maxIter) O (D 3 + D 2 

+ Dr 2 + r 3 
)

r > 1: O 
(
(DNr 3 × maxFlip + 2 r Dr 2 ) × maxIter 

)
+ DN min { D, N} ) 
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PracReProCS has the highest complexity due to the � 1 -norm min-

imization adopted to solve for sparse outliers, while our proposed

L 1 -Tracking and the OMoGMF algorithms have medium complexity.

In our experimental studies in Sections 4.2 (video surveillance) and

4.3 (cognitive radio network transmission power estimation), the

measured execution time for subspace tracking is in accordance

with the complexity analysis in Table 4 . 

6. Conclusion 

In this work, we propose a novel online robust subspace

tracking algorithm “L 1 -Tracking” based on the L 1 -norm principal-

component analysis theory. The algorithm effectively captures the

intrinsic low-rank structure of streaming data in the presence of

observation outliers. It updates the subspace at each time slot with

new sensor datum, utilizing the subspace obtained at the previous

time slot and a small batch of most recent data samples. It has the

merits of data outlier suppression through sample weighting and

speed acceleration through a warm-start bit-flipping technique. 

The experimental studies on various applications illustrated the

superior performance of the proposed algorithm in subspace esti-

mation accuracy. Besides, the theoretical analysis and experimen-

tal results demonstrated that the computational complexity of the

proposed algorithm is comparable to several state-of-the-art online

subspace learning algorithms. Meanwhile, it significantly reduces

the processing time compared to the existing iterative re-weighted

L 1 -subspace ( L 1 -IRW) calculation. Hence, the proposed method is

amenable to streaming and real-time applications. 

In terms of future work, it is of particular interest to further

investigate the capability of the proposed L 1 -Tracking algorithm to

process large data set online, such as real-time camera data that

is of high dimensionality and has high frame rate. Our experimen-

tal study on the Lobby video sequence already illustrates such po-

tential, and it is possible to explore such potential in other fields

such as large-scale IoT networks. Besides, to accelerate the sub-

space tracking speed for high-dimensional streaming data, it is sig-

nificant to investigate the sub-sampling technique. We will also de-

velop schemes to automatically select proper model parameters,

such as the rank value, processing-window size, and the weight-

update parameter. Further, currently there is a lack of theoretical

analysis on how close the estimated subspace in the proposed al-

gorithm is to the true low-rank subspace of the data. In the future

research, we will try to establish a theoretical bound for the sub-

space estimation error defined in (29) . 
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