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Abstract—Deep learning has been successfully applied to im-
age and video compression. Specifically, generative adversarial
network (GAN) can compress images at low bit rates with
sharp details and high perceptual quality. In this work, we
propose a novel generative video compression (GVC) model with
a transformer-based discriminator (TD), which learns non-local
correlations within video frames to improve adversarial training.
Besides, our GVC model incorporates a new loss to train the
generator, which combines a base loss, a discriminator-dependent
feature loss, and a perceptual loss. Experiments on HEVC test
sequences demonstrate that the proposed GVC model provides
superior performance at extremely low bit rates, compared to
existing learned and traditional video coding schemes.

Index Terms—Generative adversarial network (GAN), learned
video compression, perceptual quality, transformer.

I. INTRODUCTION

With the growing popularity of video streaming, the re-
quirement for effective video coding (VC) schemes has risen
exponentially. In the past decades, various VC standards were
developed, such as H.265 [1] and versatile video coding
(VVC) [2]. Nevertheless, traditional video codecs are hand-
crafted and are not able to be end-to-end optimized.

Recently, deep learning schemes are applied to VC. In [3],
it’s proposed to predict target frames using CNN-based auto-
encoders. Habibian et al. proposed to learn context interaction
for VC through 3D convolutions [4]. Lu et al. developed a
CNN-based deep video compression (DVC) approach [5] that
jointly optimizes motion and residual compression modules.
Afterwards, the learned VC methods in hierarchical ways [6],
[7] and recurrent learned video compression (RLVC) [8] are
put forward to compress frames with a larger group-of-pictures
(GOP) size and have achieved state-of-the-art rate-distortion
performances. Although the aforementioned VC methods have
demonstrated effectiveness, their decoded frames often suffer
from blur at low bit rates, due to the use of mean-squared error
(MSE) as the loss. Recently, GAN draws much attention in the
field of image coding [9], since it can preserve sharper and
more detailed textures compared to non-adversarial learning
methods, especially at low bit rates. A natural next-step
development is to extend it to GAN-based VC [10], [11].
Lately, perceptual learned video compression (PLVC) [12]
integrates adversarial learning into a learned VC system. It
has achieved state-of-the-art perceptual quality in learned VC
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and outperforms pure CNN- and RNN-based schemes. The
discriminator in [12] is a CNN- and RNN-based classifier.
Though effective in catching local features, it doesn’t model
long-distance dependencies and extract non-local features thor-
oughly. The transformer [13] was first proposed in natural
language processing (NLP) to explore the non-local correla-
tions among input sequences. Vision transformers also shows
success in image classification and object detection.

Inspired by the ability of transformers in exploring non-
local correlations among sequences and the potential of GAN
to compress frames at extreme low bit rates, we propose a
novel generative video compression (GVC) approach. Our
contribution is twofold: 1) For the first time in the liter-
ature, a transformer is used in a GAN-based VC system;
2) We propose a new generator (G) loss function that not
only constrains the collective pixel distortion and entropy of
multiple compressed frames, but also employs a discriminator-
dependent feature loss and a perceptual loss [14] to improve
the perceptual quality. Experiments on HEVC test sequences
reveal that GVC outperforms several state-of-the-art learned
video compression approaches and the Low-Delay P (LDP)
very fast and default configurations of the H.265 codec both
quantitatively and qualitatively, especially at low bit rates.
The paper is organized as follows: section II elaborates the
proposed GVC method, section III presents the experiments
and performance analysis. Section IV concludes the paper.

II. METHODOLOGY

We consider T successive video frames Xt, t = 1, 2, ..., T .
The first I frame X1 is intra-encoded and decoded as X̂1 using
the traditional image compression approach BPG [15]. The
remaining frames, X2, ...,XT , are P frames that are inter-
encoded with our proposed GVC. Fig. 1 (a) illustrates the
proposed GVC framework within three successive time slots.

A. Generator

Fig. 1 (b) shows the structure of the generator G, which
includes motion estimation, recurrent motion auto-encoder
(RMAE), motion compensation (MC) and recurrent residual
auto-encoder (RRAE) modules. The RMAE and RRAE mod-
ules explore the temporal corrections between adjacent video
frames. At time slot t, Xt ∈ RH×W×3 and X̂t−1 ∈ RH×W×3

are the target P frame and the decoded previous frame that
serves as the reference frame. Firstly, the spatial pyramid
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Fig. 1. (a) An illustration of the GVC framework at time slots t − 1, t and t + 1; (b) the structure of the G; (c) the structure of SFE; (d) the process of
generating the condition Ct, real St and fake sample Ŝt of the TD. k3: kernelsize = 3, s1: stride = 1, c12: channel = 12.

network (SPN) [16] is applied on Xt and X̂t−1 to estimate
the motion Xm

t ∈ RH×W×2. Then it is encoded, quantized
and decoded by RMAE, denoted as ym

t
′, ym

t and X̂m
t . The

MC module takes X̂m
t and X̂t−1 as the input to perform

warping and convolutions to refine the output, which is the
predicted target frame X′

t. Subsequently, RRAE is applied on
the residual Xr

t = Xt − X′
t. It is encoded, quantized and

decoded as yr
t
′, yr

t and X̂r
t . X̂r

t is added to the motion-
compensated frame X′

t to get the decoded P frame X̂t. The
quantized motion and residual are encoded into bit streams by
range coding.

B. Transformer-based discriminator

It is the first time that a transformer-based discriminator
(TD) is adopted in a GAN-based VC framework. Besides,
in TD, we integrate spatial-temporal side information as
conditions which are essential and effective in video coding
systems [12]. It is expected that the conditional GAN have
the potential to generate frames with temporal consistency
and rich texture, which motivates us to adopt conditions in
GVC. Fig. 1 (d) depicts the real and fake inputs of the
TD. The real pair (Xt,Xt−1) and fake pair (X̂t, X̂t−1) are
each concatenated with the condition Ct to form the real St

and fake input sample Ŝt. The condition is consisted of the
estimated temporal motion information Xm

t , and the spatial
feature ft that is extracted by spacial feature extractor (SFE)
as shown in Fig. 1 (c).

The structure of the TD is depicted in Fig. 2. To leverage
both local and non-local features, TD starts with a convolution
layer to extract features Zt ∈ RH

16×
W
16×c, where c is the

embedded dimension. Then Zt is pre-processed to get the
tensor Zf

t
′. After going through a dropout layer, it is then

processed by the 12-layer transformer blocks to get ZTrans
t .

Each layer includes a multi-head self-attention (MSA) block
with h = 8 heads and a multi-layer perceptron (MLP)
block. Layer normalization (LayerNorm) is applied before
each block, dropout layer and residual connection are applied
after each block. After that, class token is extracted and a
MLP-head (Fig. 2 bottom left) and a Sigmoid function are
performed to output the class probability. The aforementioned
workflow applies to both the real and fake input samples.

C. Loss functions

We propose to train G and TD alternately. The loss function
adopted to train the G is consisted of 5 terms. The first
component is the adversarial loss [17] defined as eq. (1).
Minimizing it enforces the classification label of the decoded
pair (X̂t, X̂t−1) to approach 1 to fool the TD. The second
distortion loss eq. (2) is the MSE between the raw Xt and the
decoded target P frame X̂t. The third entropy term controls
the bit rates, where ϕ(ymt ) and ϕ(yr

t ) are the estimated entropy
of the compressed motion ym

t and residual yrt , as shown in eq.
(3). These three terms make up the base loss as eq. (4), where
λg , λd and λf are the hyper-parameters.

The fourth component is the feature matching loss defined
as eq. (5). It’s the mean absolute error (MAE) between the
transformer’s output ZTrans

t and ẐTrans
t which are extracted

from the real and fake input respectively. The last component
is the perceptual loss [14] as defined in eq. (7), which measures
the perceptual and semantic differences between the raw and
decoded target frame. The 19-layer VGG network is adopted
to extract features from 5 layers: relu1-1, relu2-1, relu3-1,
relu4-1 and relu5-1. Ft,l and F̂t,l denote the l-th layer feature
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with Nl elements of the VGG-net, extracted from Xt and X̂t.

Ladv(G) =

T∑
t=2

ln
(
1−D(X̂t, X̂t−1|Ct)

)
(1)

Ld(G) =

T∑
t=2

MSE(Xt, X̂t) (2)

Le(G) =

T∑
t=2

(
ϕ(ymt ) + ϕ(yr

t )

)
. (3)

Lbase(G) = λgLadv(G) + λdLd(G) + λeLe(G), (4)

Lf (G) =

T∑
t=2

MAE(ZTrans
t , ẐTrans

t ). (5)

Lbf (G) = Lbase(G) + λfLf (G), (6)

LV GG(G) =

T∑
t=2

5∑
l=1

||Ft,l − F̂t,l||2

Nl
(7)

The overall generator loss is defined as eq. (8), where λv and
λe trade-off the three components. The loss function adopted
to train the TD is defined as eq. (9). Minimizing LD(D)
means that D(X̂t, X̂t−1|Ct) should approach 0 (fake label),
and D(Xt,Xt−1|Ct) should approach 1 (real label), which
can learn a discriminator that distinguishes the decoded target
frames from the raw target frames.

LG(G) = Lbase(G) + λfLf (G) + λvLV GG(G), (8)

LD(D) =

T∑
t=2

(
− ln

(
1−D(X̂t, X̂t−1|Ct)

)
− ln

(
D(Xt,Xt−1|Ct)

))
. (9)

III. EXPERIMENTAL STUDIES

A. Datasets and experiment settings

Our proposed GVC model is trained on the Vimeo-90k
[18] dataset that contains 91k video sequences, each having
7 consecutive and the frame resolution is 448×256. During
the training, we crop the frames to 256×256. The first I
frame is compressed by BPG [15] and others are 6 P frames.
Hence, in training, we set T = 7. The hyper-parameters of
the generator loss (8) are set as λg = 0.1, λd = 100, λf = 1
and λv = 1. For the entropy term, we follow [12] to adjust
λe by using α1 and α2 to approach the target bit rate Rt.
As shown in Table I, we set 5 levels of target bit rate Rt.
During training, if the bit rate is higher than Rt, λe is set as
α1, otherwise, it is set to be α2 and α2 ≪ α1. We conduct
experimental studies on the HEVC [19] test sequences (Class
B, C, D and E). To prevent error propagation, we adopt the

Fig. 2. The transformer-based discriminator (TD). k16: kernelsize = 16,
s16: stride = 16, c256: channel = 256.

bi-directional IPPP (bi-IPPP) structure [8] in testing. A GOP
has 13 frames: Xt, t = 1, 2, ..., 13. The first frame X1 is
an I frame, followed by 6 P frames Xt, t = 2, ..., 7 which
are compressed by forward predictive coding as proposed in
Section II. Afterwards, the first I frame X14 in the next GOP,
is used to conduct predictive coding for Xt, t = 13, 12, ..., 8 in
a backward direction. We compare our GVC model with five
existing VC methods, including three state-of-the-art learned
video compression schemes: PLVC [12], RLVC (PSNR) model
[8], RLVC (MS-SSIM) model [8], and two configurations of
the traditional H.265 video codec: the LDP very fast and the
LDP default setting of x265. For fair comparison, we adopt
the probability distribution model introduced in appendix 6.1
and 6.2 of [20] to estimate the entropy for GVC, PLVC [12],
RLVC (PSNR) and RLVC (MS-SSIM) model [8].

B. Evaluation metrics

The performance is evaluated subjectively by the visual
quality of the decoded frames and quantitatively by perceptual
quality metrics: Fréchet Inception Distance (FID) [21] and
Kernel Inception Distance (KID) [22]. They evaluate the
similarity between the distributions of the raw frames and the
decoded frames, and have been validated to be effective for
evaluating perceptual quality [23].

C. Performance analysis

The quantitative results, FID and KID curves against various
bit rates, are shown in Fig. 3 (a) (1) and (2). We observe
that GVC achieves the best FID and KID scores at almost
all bit rates. At low bit rate range (<0.1 bpp), it significantly
outperforms all other methods. The GAN-based video coding
method PLVC also outperforms two RLVC models which do
not unitize adversarial learning, however, PLVC is still worse
than the x265 (LDP very fast) and x265 (LDP default).

Fig. 3 (b), (c) and (d) show the enlarged spatial textures of
the decoded frames. Compared to the other five schemes, GVC
exhibits excellent performance at extreme low bit rates (0.036
bpp to 0.067 bpp), by decoding richer photo-realistic textures.
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x265 (LDP very fast), x265 (LDP default), and RLVC (MS-
SSIM) model require much higher bit rates (1.25× to 2.43×)
than GVC. However, their decoded frames are quite blurry
and noisy, such as the leaves and walls in Fig. 3 (b), the girl’s
face in Fig. 3 (c) and the eye area of the basketball player
in Fig. 3 (d). In contrast, the decodings of GVC are much
clearer. It preserves fidelity to the ground-truth frames. The
visual quality of the decoded frames produced by the RLVC
(PSNR) model and the PLVC model is similar to that of the
proposed GVC, but they require higher bit rates (1.03× to
1.90×). For example, in Fig. 3 (c), the RLVC (PSNR) model
requires 1.89× bit rates, while PLVC requires 1.14× bit rates
of GVC. Additionally, the HEVC test sequences include fast-
motion videos (Fig. 3 (d)) and slow-motion sequences (Fig. 3
(b)) which indicate the generalization ability of GVC model.

TABLE I
HYPER-PARAMETERS OF THE ENTROPY LOSS.

level Rt α1 α2

1 0.0025 60 0.01
2 0.0125 20 0.01
3 0.025 3 0.01
4 0.05 1 0.01
5 0.1 0.3 0.001

D. Ablation study

The ablation study is to validate the effectiveness of the
proposed feature and perceptual loss in eq. (5) and (7). The
GVC baseline model is trained with the base loss in eq. (4).
Feature loss is added in eq. (6) to train the GVC baseline-
feature model. Then we add the the perceptual loss to form
our proposed GVC model. In Fig. 3 (a) (3) and (4), with
the additional feature loss and perceptual loss, the FID and
KID scores on HEVC test sequences are improved (GVC
< GVC baseline-feature < GVC baseline). Each component
contributes to the perceptual quality, especially the VGG-based
perceptual loss in eq. (7), which demonstrates the effectiveness
of our proposed generator loss in eq. (8).

IV. CONCLUSIONS

In this paper, we proposed GVC for low bit-rate video
compression. For the first time in the literature, transformer is
used as the discriminator to guide the encoding and decoding
of the target frames. Besides, we propose a new generator
loss to facilitate generating decoded frames that contain more
texture details which are more consistent with human vision
system (HVS). Compared to existing learned video compres-
sion approaches as well as the LDP very fast mode and
LDP default mode of the H.265 codec, our scheme achieves
significantly higher perceptual quality at low bit rates. In terms
of future studies, we will investigate advanced transformer
structures to further improve the quality of decoded frames.
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[20] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational
image compression with a scale hyperprior,” in Proc. Int. Conf. on
Learning Representat., Vancouver, CA, May 2018.

[21] M. Heusel, H. Ramsauer, T. Unterthiner, B. Unterthiner, and S. Hochre-
iter, “Gans trained by a two time-scale update rule converge to a local
nash equilibrium,” in Proc. Adv. Neural Inf. Process. Syst., Long Beach,
CA, USA, Dec. 2017.
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Fig. 3. (a) Rate-distortion FID and KID curves of the HEVC test sequences (Class B, C, D and E) for comparison studies (1) (2) and ablation study (3) (4).
Lower FID and KID scores indicate better performance. (b) (c) (d) The visual results of the compared methods from PartyScene, BQMall and BasketballDrill
sequences.
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