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Abstract—With the continuous improvement of computer 
vision technology, more and more image information is 
consumed by machines rather than humans. Image coding for 
machines (ICM) is to compress image data such that they can be 
more efficiently sent to the receiver side for machines to conduct 
visual analysis. A typical deep learning-based ICM structure 
contains one codec network which compresses and transmits 
images through the Internet and one semantic analysis task 
network such as image classification and object recognition. In 
the codec part, the side information is the hyper-prior or 
hierarchical layers of hyper-priors for the compression of image 
latent representations. In this paper, we propose a Side 
Information Driven Image Coding (SIIC) framework based on 
deep learning. It only compresses and transmits the side 
information to the receiver for image classification tasks. We 
obtain a top-1 accuracy of 70.38% on the ImageNet1K dataset 
with 0.046 bits per pixel.  

Index Terms—side information, hyper-prior, image 
classification, image coding for machines, transformer 

I. INTRODUCTION 
The rapid development of smart cities and Internet-of-

Things (IoT) [4] has greatly accelerated the progress of deep 
learning-based image compression and visual recognition. 
Deep learning-based image compression uses deep neural 
networks such as convolutional networks to compress images. 
According to [6], deep learning-based image compression 
significantly improves the rate-distortion performance 
compared to conventional image compression techniques 
such as JPEG [23] and BPG [24]. While traditional image 
compression approaches are designed for human vision, 
nowadays more and more images are generated by end users 
and transmitted to cloud servers to perform visual recognition 
tasks such as image classification, object detection and 
instance segmentation, etc. The massive amount of images 
transmitted to the cloud serves consumes a large Internet 
bandwidth. Therefore, image coding for machines (ICM) has 
emerged as a new coding paradigm to extract and compress 
image features more useful for visual recognition tasks at 
cloud servers. 

One type of ICM frameworks is to directly extract and 
transmit the latent representation from the encoder side to the 
decoder side. For example, images are directly fed into a pre-
trained Mask-RCNN networks in [5] to extract the instance 
segmentation map which is further compressed as a 16-bit 
gray-scale profile and transmitted to perform an object 
detection task. This method directly transmits the latent 
representation which is the feature tensor produced by the 
encoder layers. Other methods first perform special 
processing on the image and then transmit it, such as MAGIC 
[7]. It is used in mountain fire recognition and building crack 

detection. MAGIC transforms the original image into 
triangulation, and the sparse points and colors in the 
triangulation will cost lower bit-rate. However, MAGIC needs 
to learn the knowledge of how to build the triangulation for 
each training set. SSSIC [8] inserts backward prediction 
modules to remove the redundancy. Because the latent 
representation of 37-class classification task is encoded from 
the latent representation of 200-class classification task, these 
two representations contain redundancy. SSSIC predicts the 
second representation through the first one and only encodes 
the difference between the predicted representation and the 
second representation for the 200-class classification task.  

Another type of existing ICM frameworks directly 
concatenate an image codec [1] and a visual recognition task 
network in an end-to-end manner [3], [9], [10], [12], [13], [14], 
as shown in Fig. 1. The codec usually consists of a main 
encoder-decoder pair and a hyper encoder-decoder pair. While 
the main encoder encodes the image x into latent 
representation y, followed by quantization, arithmetic encoder 
(AE), and arithmetic decoder (AD), the hyper encoder further 
processes y to generate side information to estimate the 
probability distribution parameters for the mainstream AE and 
AD. Then, the framework uses the output of the codec, that is, 
the decoded image 𝑥" , as the input of the task network to 
perform visual recognition tasks. However, the decoded 
image 𝑥"  contains redundant information for task inference, 
which will increase the transmission burden and is not 
conducive to the visual recognition task accuracy. 

Compared to the main stream information y generated by 
the main encoder, the side information generated by the hyper 
encoder not only consumes less bit rates, but also contains 
more abstract semantics, which can be further processed to  
perform high-level visual recognition tasks. 

In this work, for the first time in the literature, we propose 
an ICM framework, Side Information Driven Image Coding 
(SIIC), which only compresses and sends the side information 
generated by the hyperpriors of a learned image codec for 
image classification. The extremely low bit rates of the side 
information can greatly relieve the transmission bandwidth 
pressure and the proposed SIIC can still achieve highly 
reliable image recognition results. 

We use the coarse-to-fine learned image compression 
framework [2] as our codec, Vision Transformer (ViT) [11] as 
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Fig. 1. The bmshj2018-hyperprior image codec [1] connected with 
machine task network, AE and AD are arithmetic encoding and decoding. 
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the task network, and focus on the combination of side 
information and ViT. The coarse-to-fine framework is 
improved on the basis of  [1] which uses convolution layers to 
do the encoding and decoding process. It includes two layers 
of hyperpriors, which can further reduce transmission 
redundancy. ViT divides an image into small patches, uses the 
attention mechanism to calculate the degree of association 
among different patches, and finally obtains the image 
classification results. It has been proved to perform well on 
the ImageNet1K dataset [16]. 

The remaining of this paper is organized as follows: 
Section II introduces the related ICM frameworks, Section III 
elaborates our proposed method SIIC in details, Section IV 
presents the performance of SIIC through experiments, and 
Section V concludes the paper. 

II. RELATED WORK 
The human-machine interaction-oriented image coding 

framework (HMI-IC) [4] compresses and transmits the images 
to complete the task of classifying images. The stream of 
transmitted information is also capable of generating smaller-
resolution preview images. This method not only provides an 
early warning mechanism, but also saves the bandwidth.  

The Semantics-Preserving Image Compression 
framework (SPIC) [18] and the compressed representation 
method [20] both directly feed the quantized feature into task 
networks to perform visual recognition, which omits the step 
of converting the latent representation to a recovered image. 

Image pre-transformation method [19] achieves high 
image classification accuracy and low bit-rate by a deep 
encoder-decoder network with a bypass structure. In [21], 
while the pre-semantic DeepSIC places the semantic analysis 
at the encoder side, the post-semantic DeepSIC performs 
semantic analysis at the decoder side. The RNN-C + ResNet-
50 model [22] trains a recurrent neural network (RNN) as the 
codec, and incorporates with a ResNet-50 network in the 
classification task. By this way the compressed image 
preserves features relevant for classification. 

In [13], a hyperprior codec [1] is linked with a 
segmentation task. Only the first 128 channels out of the main 
stream information are used for the visual task. Although not 
using all the main stream information can objectively reduce 
the bit-rate required by the task, more than half of the channels 
may still cause data redundancy.  

All the above methods directly use all or part of the 
mainstream latent representation, which will cause relatively 
large redundant information. 

Compared with [3], our proposed method uses the coarse-
to-fine framework in [2] as our codec, and the ViT in [11] as 
the task network for image classification. Compared with [13], 
we directly utilize the side information instead of layering the 
main stream information, which further reduces the bit-rate. 

III. PROPOSED METHOD 

A. Concatenation of the codec and the task network 
The first-stage algorithmic development is to concatenate 

an image compression codec and an image classification task 
network to form an end-to-end ICM network. As shown in Fig. 
2, we take the coarse-to-fine pipeline [2] as the image 
compression codec, and the vision transformer (ViT) as the 
image classification task network. The output decoded image 
𝑥" of the codec serves as the input of ViT. 

The coarse-to-fine image codec has a main encoder-
decoder pair and two hyper encoder-decoder pairs. The image 
𝑥  is compressed by the main encoder into a latent 
representation y as shown in the following equation 

 y = Encoder(x; 𝜃!"#$%!&), (1) 

which is then quantized as 𝑦" , entropy encoded by an 
arithmetic encoder (AE) into a bitstream and transmitted to the 
decoder. The decoder then performs arithmetic decoding (AD), 
followed by the main Decoder. The first-layer hyperprior h1 
and the second-layer hyperprior h2 are obtained by the 
following equations 

 h1 = Encoder_h1(y; 𝜃!"#$%!&_()), (2) 

 h2 = Encoder_h2(h1; 𝜃!"#$%!&_(*). (3) 

To perform entropy coding of the latent vector 𝑦"  and 
convert it to a bitstream, the arithmetic encoder and decoder 
need to know the probability distribution of 𝑦" [2]. Here, we 
assume that 𝑦"  has a Normal distribution, and we use 
hyperprior ℎ1(  to estimate the parameters (𝜇+, 𝜎+) through the 
Prediction Model. Similarly, ℎ1(  is 𝒩(𝜇(), 𝜎())  distributed 
whose parameters are estimated by ℎ2(  and ℎ2(  is assumed to 

 

 
Fig. 2. The red dotted line zone is our SIIC framework for second stage training. The Concat part in the first stage is to concatenate all decoder outputs 
and form 𝑥". 
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be 𝒩(𝜇(* = 0, 𝜎(* 	= 	𝑟𝑎𝑛𝑑𝑜𝑚)  distributed. After ℎ1( , ℎ2(  
and 𝑦" are entropy encoded and transmitted to the cloud server 
end, they are parsed by the corresponding decoders: Decoder, 
Decoder_h1, and Decoder_h2, spliced along the channel 
direction and further processed by the Concat layers to obtain 
the decoded image 𝑥". 

The aforementioned coarse-to-fine image codec has two 
layers of hyper-priors, one more hyperprior than [1], which 
can further remove the redundancy contained in ℎ1. 

Denote the estimated distributions of 𝑦" , ℎ1(  and ℎ2(  as 
𝑃9(𝑦"|ℎ1(), 𝑃9(ℎ1(|ℎ2() and 𝑃9(ℎ2(), then the bit-rate required to 
transmit the encoded image 𝑦", the two encoded hyperpriors 
ℎ1(  and ℎ2( can be approximated by their entropy as shown in 
eq (4)-(6). 

 𝑅,-." = 𝐸/(+1|()3)[−log(𝑃9(𝑦"|ℎ1())] (4) 

 𝑅()3  = 𝐸/(()3|(*3)[−log(𝑃9(ℎ1(|ℎ2())] (5) 

 𝑅(*3  = 𝐸/((*3)[−log(𝑃9(ℎ2())] (6) 

The total bit-rate 𝑅-55  in (7) is the sum of all three bit 
streams, while the side information bit rate 𝑅6.%!	refers to the 
bitstreams of the two hyperpriors. 

 𝑅-55 = 𝑅,-." + 𝑅()3 + 𝑅(*3  (7) 

 𝑅6.%! = 𝑅()3 + 𝑅(*3  (8) 

      We choose ViT [11] as the task network to perform image 
classification. It utilizes the self-attention mechanism and 
Transformers [15] originally applied to natural language 
processing (NLP) to extract image semantic information. ViT 
takes 𝑥" as input for the classification task. 

      We adopt the trained coarse-to-fine model [2] and the 
trained ViT model [11] to initialize the concatenated network, 
then finetune the weights of the entire network on the 
ImageNet1K training set. 

In order to balance the bit-rates required for transmission 
and the image classification accuracy, the loss function we use 
at this stage is: 

 𝐿𝑜𝑠𝑠)67 = 	𝜆 × 𝑅-55 + 𝐿𝑜𝑠𝑠,6! + 𝐿𝑜𝑠𝑠8.7, (9) 

where 𝜆 is the hyperparameter to trade off the bit-rates and the 
image decoding and classification fidelity,  𝐿𝑜𝑠𝑠,6!  is the 
mean squared error (MSE) between x and 𝑥", and 𝐿𝑜𝑠𝑠8.7 is the 
cross-entropy loss between the ViT predicted image class 
label and the ground-truth class label. 

B. Side information network for image classification 
While existing ICM architectures use the main latent 

representation 𝑦"  or the decoded image 𝑥"  to conduct the 
classification task, in this work, we propose to use only the 
hyperpriors ℎ1(  and ℎ2(  at the decoder side to perform 
classification. This avoids the transmission of 𝑦" to the decoder, 
hence saving the bit rates.  

The second stage of algorithmic development is our 
proposed side information driven image coding (SIIC) 
network, as shown in the red dashed box in Fig. 2. In order to 
maximize the use of hyperprior information and let ℎ2(  have 
the same shape as ℎ1( , the proposed SIIC enlarges ℎ2(  by 
Decoder_h2_side to get ℎ2(	9, as shown in eq (10).  

 ℎ2(	9 =Decoder_h2_side(ℎ2(; 𝜃%!#$%!&_(*_6.%!) (10) 

Then, SIIC adds ℎ2(	9  to ℎ1(  to get ℎ9 . ℎ9	 now contains 
information from both ℎ1(  and ℎ2(. In order to be used as the 
input of ViT,  ℎ9 needs to be enlarged by Decoder_side1 and 
Decoder_side2 to get ℎ9	99. The details are depicted by eq (11) 
and (12). 

 ℎ9	9 = Decoder_side1(ℎ9; 𝜃%!#$%!&_6.%!)) (11) 

 ℎ9	99 = Decoder_side2(ℎ9	9; 𝜃%!#$%!&_6.%!*) (12) 

Besides, the detailed structures of the proposed new 
network components are depicted in Fig. 3 (Encoder, 
Encoder_h1 and Encoder_h2) and Fig. 4 (Decoder, 
Decoder_side2, Decoder_h1, Decoder_side1, Decoder_h2 
and Decoder_h2_side). 

To train the proposed SIIC network components which 
include Decoder_h2_side, Decoder_side1, Decoder_side2, 
and the ViT parameters, the codec parameters after the first 
stage training need to be fixed.  

 
Fig. 4. The decoder structures: Decoder (or Decoder_side2), Decoder_h1 
(or Decoder_side1) and Decoder_h2 (or Decoder_h2_side) from left to 
right. c is the number of output channels, k is the kernel size, s is the stride 
size. Depth2Space [2] doubles the tensor’s height and width and downsizes 
the channel by a factor of 2. 

 

 

 

 

 

 
Fig. 3. The encoder structures: Encoder, Encoder_h1 and Encoder_h2 (left 
to right). c is the number of output channels, k is the kernel size, s is the 
stride. Space2Depth [2] doubles the tensor’s channel and downsizes the 
height and width by a factor of 2. 
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The side information ℎ1( and ℎ2( are connected to the SIIC, 
and then its output ℎ9′′ is fed into the ViT trained in the first 
stage. The loss function used in the second stage is simply the 
cross-entropy loss that captures image classification errors: 

 𝐿𝑜𝑠𝑠*"% = 	𝐿𝑜𝑠𝑠8.7, (13) 

the weights of the codec do not participate in training, so the 
bit-rate remains unchanged, and it is 𝑅6.%! in (8).  

IV. EXPERIMENTS AND RESULTS 
We use ImageNet1K [16] as the dataset for experimental 

studies. The training set has 1.28M images, the validation set 
has 50,000 images, and all images belong to 1,000 categories. 
The images need to be resized to 256×256 before being input 
into the codec. 

A. Two-stage training 
We trained the proposed ICM network in two stages. In 

the first stage, we concatenate the coarse-to-fine image codec 
and the ViT image classifier. The coarse-to-fine framework [2] 
provides 7 models pre-trained on the DIV2K dataset [25] for 
different bit-rates. We use the first three of them, and the 
corresponding hyperparameter 𝜆 that controls the bit-rate is 
1/0.0012, 1/0.0015, 1/0.008, respectively. We adopt the 
trained model of ViT provided by [11],  which was pre-trained 
on ImageNet21k and then fine-tuned on ImageNet1k. 
Afterwards, we finetune the concatenated end-to-end ICM 
network on the ImageNet1k dataset. In the first-stage training, 
the batch size is 32, the learning rate is set to 1e-6, and the 
optimizer is the Adam optimizer [17]. We trained the network 
for 2 epochs. 

In the second-stage training, we fix the concatenated ICM 
network parameters trained in the first stage, extract ℎ1(  and 
ℎ2(  and connect them to the proposed SIIC components.   Then, 
we trained the parameters of the side decoders with the ViT 
parameters finetuned. The batch size is set as 64，and the 
network was trained for 7 epochs. 

B. Comparison with other DNN based ICM frameworks  
Fig. 5 shows the comparison of classification top-1 

accuracy between different methods on the ImageNet1K 
validation set, with bit-rate on the horizontal axis and top-1 
accuracy on the vertical axis. Compared to other methods 
which achieve the same classification accuracy, our method 
requires much less bit rates. For example, to achieve an 
accuracy of about 72.5%, our method only needs 0.0587 bpp, 
but SPIC-Q [18], which is the closest to our method, requires 
at least 0.143 bpp, which is 2.43 times that of our method. A 
detailed comparison is provided in Table I. 

TABLE I.  BIT-RATE REQUIRED TO ACHIEVE AROUND 72.5% IMAGE 
CLASSIFICATION TOP-1 ACCURACY 

Method Bit-rate(bpp) Accuracy (%) 
Ours 0.0587 72.84 

SPIC-Q[18] 0.143 72.51 

HMI-IC[4] 0.847 72.72 

J-FT T-FT[3] 0.368 72.34 

RNN-C + ResNet-50[22] 1.0 73.16 

V. CONCLUSION 
We propose a deep learning-based image compression 

network for classification tasks. For the first time in the 
literature, we combine the side information that assists the 
main stream information encoding with the image 
classification network to form the SIIC framework. Since the 
hyperprior has more abstract semantic information and 
consumes less bit-rates, the proposed method can save the 
transmission bandwidth while maintaining a high level of 
image classification accuracy. In future work, we will 
continue to explore the role of side information in other visual 
recognition tasks. 
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