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ABSTRACT

Video coding is the process of reducing the huge volume of video data to a small number of bits. High coding
efficiency reduces the bandwidth required for video streaming, and the space required to store the video data on
electronic devices, while maintaining the fidelity of the decompressed video signal. In recent years, deep learning
has been extensively applied in the field of video coding. However, it remains challenging how to explore the
intra- and inter-frame correlations in deep learning-based video coding systems to improve the coding efficiency.
In this work, we propose a hierarchical motion estimation and compensation network for video compression. The
video frames are tagged as intra-frames and inter-frames. While intra-frames are compressed independently, the
inter-frames are hierarchically predicted by adjacent frames using a bi-directional motion prediction network,
which results in highly sparse and compressible residue. The residue frames are then compressed via separately
trained residue coding networks. Experimental results demonstrate that the proposed hierarchical deep video
compression network offers significantly higher coding efficiency and superior visual quality compared to prior
arts.

Keywords: Artificial intelligence, convolutional neural network, computer vision, deep learning, motion esti-
mation, multi-scale structural similarity, video coding, video compression.

1. INTRODUCTION

Video coding is the process that compresses video data to reduce the data amount, to save the storage memory
and data transmission bandwidth. While traditional video coding methods rely on signal processing techniques
such as discrete-cosine transform (DCT), quantization, and entropy coding, recent advances in deep learning
have triggered the development of learning-based image compression and video coding systems.

The major difference between video coding and image compression is, video sequence is consisted of succes-
sive motion pictures that involve scene dynamics and are correlated. A video coding system can leverage the
inter-frame correlations and reduce the information redundancy as much as possible. Traditional video coding
standards such as H.264, HEVC, and Versatial Video Coding (VVC) adopt motion estimation and motion com-
pensation, which has to be conducted for each individual video, thus incurs high computational complexity at
the encoder side. With the availability of huge amount of training videos, deep learning has turned a video
coding system into a learning paradigm, which can automatically extract features for efficient video compression
at the encoder side, and recover the video frames from these highly compressed features at the decoder side.

For example, [1] replaces each component of the traditional video coding system by a convolutional neural
network, such as motion estimation, motion compression, post-processing to generate the predicted inter-frame,
and residue compression. Although it achieves good performance, it needs to explicitly generate the motion field
and compress it, which leads to extra bit rates. Moreover, it is a frame-wise compression system that takes the
full-resolution video frame as input and performs convolution to extract features, which incurs high computational
complexity. In [2], the inter-frame residue is compressed by a recurrent neural network (RNN). This approach
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is able to make use of the correlation in a large number of frames, instead of the very limited reference frames
in the non-recurrent approaches. Nevertheless, in this method, frame prediction is uni-directional. In [3], 3D
convolution is adopted to exploit spatial-temporal correlations and to compress multiple frames together. In [4],
video frames are divided into key frames and non-key frames. While keys frames are compressed individually
by a CNN, the non-key frames are compressed by CNN-based interpolation. In [5], the temporal correlation is
leveraged by optical-flow based motion estimation and residue coding. To further reduce energy, it predicts flow
elements among successive frames and compresses the predictive difference of optical flows.

Other methods tried to integrate deep learning into the traditional video coding framework, which are the
so-called “deep tools”. For instance, in [6], [7] CNN-based predictors are integrated into HEVC to improve the
accuracy of inter-frame prediction. In [8], a CNN-based fractional-pixel motion compensation is proposed and
integrated into HEVC. In addition, a CNN-based residue super resolution method is proposed for video coding
in [9] and integrated into HEVC.

In this work, we propose a pure CNN-based deep video coding architecture, without any elements in traditional
video coding. To reduce the computational complexity and model size, we adopt a patch-based approach, in
which the video frames are divided into small patches to process. Our video coding system has a hierarchical
structure with a GOP size of 4. It has three layers: Layer-1 compresses the intra (I) frames, Layer-2 compresses
the B1 frames (the middle frame between two successive I frames), and Layer-3 compresses B2 frame (the middle
frame between a preceding Layer-1 I frame and a subsequent Layer-2 B1 frame) and B3 frame (the middle frame
between a preceding Layer-2 B1 frame and a subsequent Layer-1 I frame). In particular, the Layer-2 compression
adopt a bi-directional inter-frame prediction network, followed by residue coding. A similar approach is adopted
in Layer-3 coding. Instead of explicitly carrying out motion estimation and compensation, our bi-directional inter-
frame prediction networks can directly generate the predicted target blocks, which eliminates the compression
of motion fields. We demonstrate by experimental studies on common test video sequences that the proposed
hierarchical compression model achieved a higher coding efficiency than intra-frame coding and two-layer inter-
frame coding [10].

The rest of the paper is organized in the following sections: Section 2 introduces the proposed network,
Section 3 demonstrates the effectiveness of our proposed method through experimental studies, and Section 4
concludes the work.

2. PROPOSED NETWORK

Fig. 1 shows the hierarchical coding structure of our proposed method. We adopt a GOP size of 4, and three
layers of coding. Layer-1 compresses the I frames independently. Layer-2 compresses the B1 frame, by first
predicting it with the nearest preceding and subsequent decoded I frames. The prediction direction is given
by the arrows in Fig. 1. Then the residue between the ground-truth B1 and the prediction is compressed.
Layer-3 has two parts: part-1 compresses B2, by first predicting it from the decoded preceding I frame and
the decoded subsequent B1, followed by residue compression; while part-2 compresses B3, by first predicting it
from the decoded preceding B1 and the decoded subsequent I frame, again followed by residue compression. In
our previous work [10], we adopted an IBIB coding structure, which only has one intra-coding layer and one
inter-coding layer. In the following subsections, we will elaborate the details of each coding layer of our new
scheme.

2.1 Layer-1 Compression

Layer-1 adopts a convolutional neural network to compress the I frames. The network structure and parameters
are specified in Fig. 2. We divide each I frame into patches of size 60× 52. The network takes each patch as the
input. In Fig. 2 s = [sh, sw] represents the strides in height and width. We adopt different strides s to control
the encoded feature dimension, followed by uniform scalar quantization and entropy coding, leading to different
bit rates. Compared to our previous work [10], we improve this I frame compression network by adding a batch
normalization (BN) [11] after each convolutional layer, to reduce internal covariate shift.
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Figure 1: The proposed hierarchical coding structure with a GOP size of 4.

Figure 2: An illustration of the Layer-1 network.

2.2 Layer-2 Compression

Layer-2 compression is consisted of a bi-directional prediction network, and a residue coding network. It is worth
noting that in [10], an IBIBI coding structure was adopted, hence the inter-frame (B frame) is predicted by
adjacent previous and next decoded I frames. In contrast, this work adopts an IB2B1B3I structure, hence the
Layer-2 inter-frame B1 is predicted by the decoded reference blocks in the preceding and subsequent I frames.
The prediction network layers are shown in Fig. 3. Branch 1 takes the preceding decoded I frame reference
block as input, and branch 2 takes the subsequent decoded I frame reference block as input. To reduce the
number of trainable parameters and to reduce the model size compared to the prediction net in [10], we adopt a
smaller number of filters (8 filters) at the last layer of both two feature extraction branches. The outputs of both
branches are then concatenated to be the input of the fusion block. Again, we add a BN after each convolution
layer. The fusion block outputs the predicted B1 patch X̃B1

. To compress the residue Xr
B1

= XB1
− X̃B1

, we
adopt the same network as the Layer-1 compression network, except that the network takes a residue patch of
size 8 × 8 × 3, while in Layer-1 compression, we use a larger patch size. The output of Layer-2 compression is
the decoded B1 patch residue X̂r

B1
, which is then added to the predicted patch X̃B1

to form the final decoded

B1 patch X̂B1
= X̃B1

+ X̂r
B1

.
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Figure 3: The proposed bi-directional prediction network.

2.3 Layer-3 Compression

Layer-3 compresses B2 and B3 frames. It is consisted of two prediction networks and two residue coding networks.
Both prediction networks adopt the same structure as that in Fig. 3. The first prediction network takes the
decoded X̂I and X̂B1

as the input of Branch 1 and Branch 2, respectively. It then outputs the predicted B2

patch X̃B2
. The second prediction network takes the decoded X̂B1

and the subsequent X̂I as the input of Branch

1 and Branch 2, respectively. It then outputs the predicted B3 patch X̃B3
.

Afterwards, the first residue coding network compresses the prediction residue Xr
B2

= XB2
− X̃B2

, while the

second residue coding network compresses the prediction residue Xr
B3

= XB3 − X̃B3 . These two residue coding

networks adopt the same structure as the Layer-2 residue coding network. Finally, the decoded residues X̂r
B2

and X̂r
B3

at the output of these two residue coding networks are added to the predicted patch to form the final

decoded B2 patch X̂B2
= X̃B2

+ X̂r
B2

and decoded B3 patch X̂B3
= X̃B3

+ X̂r
B3

, respectively.

3. EXPERIMENTAL STUDIES

In this section, we carry out experimental studies to demonstrate the effectiveness of our proposed model.

3.1 Datasets

We use three common test video sequences to evaluate the performance of our algorithm: BlowingBubbles,
BQSquare, and Johnny. The resolutions of BlowingBubbles and BQSquare are both 240 × 416. The original
resolution of Johnny is 720 × 1280. To save model training time, we resize Johnny to 240 × 416. We use the
first 100 frames of each video sequence to train all the models, then we use the next 100 frames of each video
sequence for testing. In total, we have 7 models to train: one I-frame compression model for Layer-1; one B1-
frame prediction model and one B1-residue compression model in Layer-2; and finally, two prediction models and
two residue compression models in Layer-3 to predict and compress B2 and B3. In terms of training complexity,
it is higher than our previous method in [10], however, this new method enhances the coding efficiency.
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3.2 Evaluation Metrics

We evaluate the performance of the proposed model by the multi-scale structural similarity (MS-SSIM) [12] versus
the bit rates measured in bits per pixel (bpp) of the compressed video. The single-scale structural similarity
(SSIM) was originally proposed in [13] to approximate the perceptual similarity between two images. Assume x
is the ground-truth test frame and y is the decoded test frame. Let µx, σ2

x and σxy be the mean of x, the variance
of x, and the covariance of x and y, respectively. Approximately, µx and σx can be viewed as estimates of the
luminance and contrast of x, and σxy measures the tendency of x and y to vary together, thus an indication of
structural similarity. In [13], the luminance, contrast and structure comparison measures between x and y were
given as follows:

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1
, (1)

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2
, (2)

s(x,y) =
2σxy + C3

σxσy + C3
, (3)

where C1, C2 and C3 are small constants. Then the single-scale SSIM is defined as:

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ , (4)

where α, β and γ are parameters to define the relative importance of the three components.

To supply more flexibility than the single-scale SSIM, the MS-SSIM was proposed in [12] to incorporate the
variations of viewing conditions. In particular, it is obtained by combining the SSIM at different image scales
using

MS-SSIM(x,y) = [lM (x,y)]αM ·
M∏
j=1

[cj(x,y)]βj · [sj(x,y)]γj , (5)

where j is the scale index, M is the number of scales adopted, and similar to (4), the exponents αM , βj and γj
are used to adjust the relative importance of different components.

3.3 Objective Analysis

We quantitatively analyze the rate-distortion performance of our proposed hierarchical video compression model
in Fig. 4. Both the MS-SSIM and bpp values are averaged over 100 test frames for each video. For all three
video sequences, we observe that the proposed Inter GOP = 4 can achieve the same level of MS-SSIM with less
bit rates than Inter GOP = 2 [10] and the baseline Intra-frame coding.

In particular, Fig. 4 (a) shows that for BlowingBubbles, at MS-SSIM 0.900, the baseline Intra-frame coding
method requires 0.25 bpp, while Inter GOP = 2 and the proposed Inter GOP = 4 requires 0.19 bpp and 0.14
bpp, which reduces the bit rates by 24% and 44% respectively, compared to the baseline. At MS-SSIM 0.920,
the baseline requires 0.46 bpp, while Inter GOP = 2 and the proposed Inter GOP = 4 requires 0.35 bpp and
0.28 bpp, which reduces the bit rates by 24% and 39% respectively. At MS-SSIM 0.940, the baseline requires
0.96 bpp, while Inter GOP = 2 and the proposed Inter GOP = 4 requires 0.66 bpp and 0.54 bpp, which reduces
the bit rates by 31% and 44% respectively. Similar results can be obtained in Fig. 4 (b) for BQSquare.

Besides, for Johnny, we observe from Fig. 4 (c) that the proposed Inter GOP = 4 achieves an MS-SSIM of
0.970 at 0.04 bpp, but Inter GOP = 2 and baseline achieve this level of MS-SSIM at much higher bit rates, 0.2
bpp and 0.61 bpp, respectively. Further, the proposed Inter GOP = 4 achieves its highest MS-SSIM 0.983 at 0.34
bpp, while Inter GOP = 2 achieves its highest MS-SSIM 0.975 at 0.41 bpp, and the baseline achieves its highest
MS-SSIM 0.970 at 0.61 bpp. We observe a performance loss at the highest bpp values in Fig. 4 (c), for all three
models. It is because a large area of Johnny scene is very smooth, but we adopted uneven strides in height and
width s = [2, 4] to obtain these bit rates in the I-frame and residue-frame encoding and decoding layers. This
severely dampened the structural quality of the decoded I frames, which further affected the inter-frames.
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(a) (b) (c)

Figure 4: The rate-distortion curves of (a) BlowingBubbles, (b) BQSquare, and (c) Johnny.

Figure 5: The enlarged ground-truth frame and the decodings of I, B, B1, and B2/B3 frames. The B frame
refers to the inter-frame in Inter GOP=2, in which the coding structure is IBIBI. The three rows of images from
top to bottom in this figure are BlowingBubbles, BQSquare, and Johnny, respectively.
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3.4 Subjective Analysis

We also display the decoded frames with three different coding structures in Fig. 5. The table at the top
describes the percentage of each frame type in a different coding structure. The Intra-frame coding has 100% I
frames that are compressed independently. The Inter GOP = 2 coding has an IBIBI coding structure, in which
50% are I frames and another 50% are B frames, with each B frame predicted by the adjacent previous and
next decoded I frames. In contrast, our proposed Inter GOP = 4 has an IB2B1B3I structure, in which 25% are
I frames, 25% are B1 frames, and the remaining 50% are B2 or B3 frames.

We observe from Fig. 5 that the decoded I frames have the worst visual quality. They are blurry (such as
the curly straw in BlowingBubbles), noisy (such as the white area in BQSquare), or have blockiness artifacts (the
table area in BQSquare and the chin area of the man in Johnny). Our proposed Inter GOP= 4 scheme has the
smallest percentage (25%) of such I frames, leading to a higher average MS-SSIM. However, the Inter GOP= 2
and Intra coding schemes have 50% and 100% such low-quality I frames. On the other hand, the decoded B
frame, B1 frame, and B2/B3 frames have very close visual quality. Since our proposed Inter GOP= 4 is mainly
consisted of these type of frames, the overall visual quality of our scheme is better than the other two methods
in comparison.

4. CONCLUSIONS

In this work, we proposed a patch-wise hierarchical CNN for video coding. The coding structure has three layers.
While Layer-1 performs intra-frame coding, Layer-2 and Layer-3 both perform bi-directional predictive coding.
This scheme significantly enhances the coding efficiency compared to intra-frame coding and inter-frame coding
that has only one prediction and residue coding layer. The superiority of our new model is demonstrated by
experimental studies on common test video sequences.
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