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ABSTRACT

Video data has occupied people’s daily professional and entertainment activities. It imposes a big pressure on the
Internet bandwidth. Hence, it is important to develop effective video coding techniques to compress video data
as much as possible and save the transmission bandwidth, while still providing visually pleasing decoded videos.
In conventional video coding such as the high efficiency video coding (HEVC) and the versatile video coding
(VVC), signal processing and information theory-based techniques are mainstream. In recent years, thanks to
the advances in deep learning, a lot of deep learning-based approaches have emerged for image and video com-
pression. In particular, the generative adversarial networks (GAN) have shown superior performance for image
compression. The decoded images are usually sharper and present more details than pure convolutional neural
network (CNN)-based image compression and are more consistent with human visual system (HVS). Neverthe-
less, most existing GAN-based methods are for still image compression, and truly little research investigates
the potential of GAN for video compression. In this work, we propose a novel inter-frame video coding scheme
that compresses both reference frames and target (residue) frames by GAN. Since residue signals contain less
energy, the proposed method effectively reduces the bit rates. Meanwhile, since we adopt adversarial learning,
the perceptual quality of decoded target frames is well-preserved. The effectiveness of our proposed algorithm is
demonstrated by experimental studies on common test video sequences.

Keywords: Deep learning, generative adversarial network, human visual system, image compression, motion
compensation, perceptual quality, residue-frame coding, video coding

1. INTRODUCTION

Video data has occupied people’s daily professional and entertainment activities, such as video conferences, live
commerce, online video games, live concerts and shows. When a popular live show has a high demand among
audiences, it imposes a big pressure on the transmission bandwidth. Hence, it is important to develop effective
video coding techniques to compress the video signal as much as possible and save the bandwidth, while still
providing visually pleasing decoded videos to let the audiences enjoy the live show.

In conventional video coding such as the high efficiency video coding (HEVC) [1] and the versatile video
coding (VVC) [2], [3], signal processing and information theory based techniques are mainstream. In recent
years, thanks to the advances in deep learning [4–6], a lot of deep learning-based video coding techniques have
emerged. In particular, generative adversarial network (GAN)-based image compression schemes have shown
superior performance in offering high perceptual-quality decoded images [7–9]. GAN [10] was originally proposed
to generate photo-realistic images from random noise, by training two competing networks: the generator and the
discriminator. Recently, studies showed that the decoded images of GAN-based compression systems are usually
sharper and present more details than pure convolutional neural network (CNN)-based image compression that
merely adopts the mean-squared-error (MSE) loss to train the network [11], [12].

Nevertheless, most existing works utilize GAN only for image compression [8], [13], [14], image style translation
[15], [16], artifact removal [17], or for video frame prediction and generation [18–25]. Truly little research directly
applied GAN to residue-frame coding. In this work, we propose a novel video coding system in which both
reference frames and target (residue) frames are compressed by GAN. Since residue signals contain less energy,
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the proposed method effectively reduces the bit rates. Meanwhile, since we adopt adversarial learning, the
perceptual quality of decoded target frames are well-preserved.

The rest of the paper is organized as follows: Section 2 introduces the related work in GAN-based image
and video compression and processing, Section 3 elaborates the proposed GAN-based video coding system, and
Section 4 presents the experimental studies and analysis. Finally, Section 5 concludes the paper.

2. RELATED WORKS

GAN-based image compression was first proposed in [7]. It trained a regular GAN network for image generation,
and then used the trained generator as the image decoder, followed by training an encoder to work with the
previously learned decoder. In this way, the decompressed image is expected to look more like a natural image
that has higher perceptual quality. In the same work, a GAN-based video compression system was also proposed,
with frame interpolation in the latent space (encoded feature space). However, the experiments in this work
were only conducted on an old gray-scale action recognition data set [26] instead of HEVC test sequences.

The work in [8] proposed a GAN to compress images and to synthesize unimportant regions in the decoded
image from a semantic label map. The method in [13] proposed a GAN-based face image compression scheme
that not only considers the pixel-domain distortion loss and the adversarial loss, but also incorporates a semantic
loss that preserves features for face recognition. Nevertheless, the major problem in these works is they do not
consider videos and are limited to only image compression.

In [9], a GAN-based video coding scheme is proposed. It has a deterministic encoder that encodes the edges
of the video frames with high compression rates, and only the decoder is trained as a generator in a GAN setup.
However, this work does not explore motion and does not perform residue coding.

In addition, GAN has been used for artifact removal to enhance the quality of traditional intra-frame coding
[17]. However, in this work the encoder and decoder that perform the compression do not involve any idea of
GAN.

GAN has been more often investigated as a means for video prediction and generation [18–25], such as frame
extrapolation [18], [24], slow-motion [20] and multi-view [25] video generation. However, in all of these works,
GAN is only utilized as a prediction tool. It does not participate in the actual compression module.

3. THE PROPOSED GAN-BASED INTER-FRAME CODING FRAMEWORK

Our proposed video coding architecture starts with a reference-frame coding module, which encodes and decodes
the reference frame Xt−1 ∈ RH×W×3 at time-slot t− 1, using the GAN-based image compression scheme in [8].

It generates the decoded reference frame X̂t−1. Here H, W , and 3 represent the height, width, and channel of
the frame.

Subsequently, as shown in Fig. 1, our proposed GAN-based inter-frame coding scheme compresses the target
frame Xt with two modules: (a) a motion-compensated target-frame prediction module; and (b) a GAN-based
residue-frame coding module.

3.1 Motion-Compensated Target-Frame Prediction

As shown in Fig. 1 (a), the decoded reference frame X̂t−1 and the ground-truth target frame Xt are fed into
a motion estimation and compensation module, to generate a motion-compensated prediction Xp

t of the target

frame. In particular, a motion estimation module first estimates the optical flow Ft−1→t between X̂t−1 and Xt,
then an optical-flow compression block encodes Ft−1→t into a bit stream. Then, warping is performed on the

decoded reference frame X̂t−1 and the decoded flow F̂t−1→t, to generate a warped target frame Xw
t . Finally, a

motion compensation block processes Xw
t , X̂t−1, and F̂t−1→t to generate the final prediction Xp

t of the target
frame.
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Figure 1. The proposed GAN-based inter-frame video coding architecture.

3.2 Residue-Frame Coding

Fig. 1 (b) shows the residue-frame coding module. The motion-compensated prediction Xp
t is subtracted from

the target frameXt to obtain the residue frameXr
t , which is the input of the residue-frame encoder. In particular,

the encoder E is consisted of several convolutional layers and outputs the encoded residue feature Yr
t ∈ Rh×w×c,

where h, w, and c represent the height, width, and channel of the feature maps. The output layer of the
encoder adopts the ReLU activation function. Then, a residue feature compression block performs quantization,
arithmetic coding, and de-quantization.

The input of the generator/decoder G is the channel concatenation of the de-quantized residue feature

Ŷr
t ∈ Rh×w×c and a random noise Zt ∈ Rh×w×c. The generator is consisted of a convolutional layer with

960 feature maps, 9 residual blocks, each with 960 feature maps, several up-sampling layers that convert the
height and width of the feature maps to the original frame size, followed by a convolutional layer that generates
the decoded residue frame X̂r

t ∈ RH×W×3. It is then added to the prediction Xp
t to form the final output of the

generator, that is, the decoded target frame X̂t ∈ RH×W×3.

3.3 Multi-scale discriminator

For the discriminator D, we use the multi-scale architecture of [8], which was originally proposed in [27]. The

inputs of the discriminator are Xs
t and X̂s

t , representing the ground-truth and decoded t-th frame at scale s.
Scale s = 1 refers to the original resolution, scales s = 1

2 and s = 1
4 refer to the frame down-sampled by a factor

of 2 and 4, respectively.

For each scale s, the discriminator processes the ground-truth Xs
t to extract features Fs

t,l of five convolutional

layers l = 1, 2, · · · , 5. The same operation is conducted on the decoded target frame X̂s
t to extract features F̂s

t,l

of five layers l = 1, 2, · · · , 5.

3.4 Loss functions

The loss function adopted to train the encoder and generator Lencoder-generator(E,G) is consisted of three com-
ponents. The first component is the distortion loss defined as the MSE between the ground-truth target frame
Xt and the decoded target frame X̂t

Ldistortion(E,G) = MSE(Xt, X̂t). (1)

The second component is the generator loss defined as

Lgenerator(E,G) = ∥F̂1
t,5 − 11∥2F , (2)
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where F̂1
t,5 is the discriminator layer-5 feature extracted from the full-resolution decoded target frame X̂1

t , 1
1 is

an all-one tensor of the same size as F̂1
t,5, and ∥ · ∥2F represents the squared Frobenius-norm. Minimizing such

generator loss enforces each element in F̂1
t,5 to approach 1, which trains an encoder-generator pair that fools the

discriminator. The third component is the feature matching loss defined as

Lfeature(E,G) =
∑

s=1, 12 ,
1
4

4∑
l=1

MSE(Fs
t,l, F̂

s
t,l). (3)

That is, the element-wise MSE between the discriminator features extracted from the ground-truth target frame
and those extracted from the decoded target frame, summed over all scales and all intermediate discriminator
layers l = 1, 2, 3, 4.

Hence, the overall encoder-generator loss is defined as

Lencoder-generator(E,G) = Lgenerator(E,G) + λxLdistortion(E,G) + λfLfeature(E,G), (4)

where λx and λf are the weights that trade off the three components.

The loss function adopted to train the multi-scale discriminator is defined as

Ldiscriminator(D) =
∑

s=1, 12 ,
1
4

(
∥Fs

t,5 − 1s∥2F + ∥F̂s
t,5∥2F

)
, (5)

where 1s is an all-one tensor of the same size as Fs
t,5, s = 1, 1

2 ,
1
4 . Minimizing Ldiscriminator(D) means that each

element in Fs
t,5 should approach 1, and each element of F̂s

t,5 should approach 0, which can learn a discriminator
that distinguishes the fake (decoded) target frames from the ground-truth target frames.

4. EXPERIMENTAL STUDIES

4.1 Datasets

We conduct experimental studies on three HEVC test sequences, BlowingBubbles, BQSquare, and Johnny. The
resolution of BlowingBubbles and BQSquare is 240 × 416. The original resolution of Johnny is 720 × 1280. To
save the training time, we resizes Johnny such that it has the same resolution 240× 416 as the other two videos.

We group the frames in each video sequence as pairs of odd and even frames (Xt−1,Xt), t = 2, 4, 6, · · · , in
which the odd frames are the reference frames, and the even frames are the target frames. The Johnny sequence
has 600 frames in total, so there are 300 pairs of odd and even frames. We randomize these 300 pairs and split
them into 3 groups, each with 100 pairs. We first train a GAN-based intra-frame compression network [8] with
the even frames in group 1. Afterwards, we use the trained intra-frame compression model to encode and decode
the odd frames of group 2.

Next, we applied the motion-compensated prediction model in Fig. 1 (a) to predict the ground-truth even

frames of group 2 (Xt, t = 2, 4, 6, · · · ) from the decoded odd frames of group 2 (X̂t−1, t = 2, 4, 6, · · · ). The
model was pre-trained by [28] using the Vimeo-90K [29] data set. The predicted frames are denoted as Xp

t , t =
2, 4, 6, · · · . Then, we use the predicted and ground-truth even frames of group 2 to train the proposed residue-
frame compression network in Fig. 1 (b). Finally, the 100 pairs in group 3 are used to test the trained GAN-based
video coding model with three steps: reference-frame coding, motion-compensated prediction, and residue-frame
coding. A similar approach is used for the training and testing of the other two video sequences.

4.2 Evaluation metrics

We evaluate the performance of the proposed GAN-based video coding system subjectively by the visual quality
of the decoded frames and quantitatively by the rate-distortion metrics. The distortion is measured by the peak
signal-to-noise ratio (PSNR) and the multi-scale structural similarity (MS-SSIM) [30] between the decoded and
the ground-truth target frames, and the bit rates are measured by the average bits per pixel (bpp) of the encoded
target frames.
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Figure 2. Sample decoding of BlowingBubbles (first-row), BQSquare (second-row) and Johnny (third-row). The average
bit rates (bpp), PSNR (dB), and MS-SSIM of the three frames are labeled above the figure.

4.3 Comparison with other methods

We compare the performance of our proposed GAN-based motion-compensated inter-frame video coding system
(GAN-Inter-MC) to the original GAN-based image compression network (GAN-Intra) [8] and another two state-
of-the-art deep learning-based image compression schemes: the end-to-end optimized image compression network
[11] (End-to-End) and the compressive auto-encoder [12] (CAE). These two models are CNN-based approaches
with different network structures, but both of them adopt the MSE between the ground-truth frame and the
decoded frame as the loss function.

Fig. 2 shows an enlarged 70× 70 region of a ground-truth target frame for each of the three video sequences,
and the corresponding decoding by our proposed GAN-Inter-MC, GAN-Intra [8], CAE [12] and End-to-End [11].
The average bit rates (bpp), PSNR (dB) and MS-SSIM values are labeled above the figure. Our proposed GAN-
Inter-MC scheme reduces the average bpp by 30.58%, 47.63%, and 34.98% while increasing the average PSNR
by 1.29 dB, 1.92 dB, and 1.44 dB compared to GAN-Intra, CAE and End-to-End, respectively. The average
MS-SSIM of GAN-Inter-MC is higher than that of the other three schemes. Besides, the perceptual qualities of
the proposed GAN-Inter-MC and GAN-Intra are significantly better than those of CAE and End-to-End. They
both recover texture details in the decoded frames, such as the girl’s hair and ear areas for BlowingBubbles (Fig.
2 first-row), the things on the table for BQSquares (Fig. 2 second-row), and the man’s mouth for Johnny (Fig. 2
third-row). In contrast, the decoded frames of CAE and End-to-End are much more blurry. The reason is CAE
and End-to-End merely adopt MSE as their loss functions, and MSE only enforces consistency in pixel intensity
values. Although the perceptual quality of the proposed GAN-Inter-MC is similar to that of GAN-Intra, it
requires 30.58% less bit rates.

To provide quantitative performance evaluation in detail, we plot the PSNR and MS-SSIM versus bit rate
curves in Fig. 3, and compare our proposed GAN-Inter-MC to the other three methods. We observe that for all
three videos, GAN-Inter-MC is able to achieve the same or higher PSNR and MS-SSIM values at much lower
bit rates, compared to all other schemes.
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Figure 3. The peak signal-to-noise ratio (PSNR) and the multi-scale structural similarity index (MS-SSIM) versus the bit
rates (bpp) of BlowingBubbles (left-column), BQSquare (middle-column), and Johnny (right-column).

5. CONCLUSIONS

In this paper, we proposed a novel GAN-based video coding system that uses GAN to encode and decode both
the reference frames and the residue between the target and predicted frames. The method effectively reduces the
bit rates compared to GAN-based intra-frame compression. Compared to CNN-based image compression, the
proposed method has leveraged the adversarial learning of GAN to generate decoded frames that contain more
texture details and are more consistent with HVS. Overall, our scheme simultaneously achieved high perceptual
quality and reduced bit rates. In terms of future studies, we will test our method on videos of different resolutions,
and will incorporate hierarchical motion prediction in our GAN-based video coding system to further enhance
the coding efficiency.
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