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Abstract—Modern hybrid video codecs split their video content 
into blocks. These blocks are predicted and the difference between 
original and predicted block is calculated. This residual block is 
transformed by a discrete cosine transform (DCT) from the pixel 
domain into the frequency domain and quantized by a dead-zone 
quantizer (DZQ), which removes high frequency signals, 
depending on the quantization parameter (QP). DZQ has an 
extended zone around zero, which acts as a noise-gate, removing 
noise as intended but also removing useful signals.  DCT and DZQ 
are not the optimal solution, they create distortions and side effects 
at lower bitrates. In contrast, sparse coding does not have these 
problems at lower bitrates, but it compresses inefficient at higher 
bit rates. We propose a method to add sparse coding as an 
alternate transform, which is controlled by a rate-distortion 
optimization (RDO) decision, in a semi-extreme sparse coding 
(SESC) setup and uses a semi-extreme dictionary training (SEDT) 
process. It is integrated into the High Efficiency Video Coding 
(HEVC) test model HM-16.18 and screen content coding (HEVC-
SCC) test model HM-16.18+SCM-8.7. Experimental results 
demonstrate that the proposed method achieves a Bjontegaard 
rate difference (BD-rate) of up to 5.5% compared to the standard.  
 

Index Terms— video coding, sparse coding, sparse 
representation, orthogonal matching pursuit, screen content 
coding, HEVC, residual coding, intra prediction, KSVD 

I. INTRODUCTION 

Traditional video codecs follow a block-based hybrid approach. 
Codecs divide video content into frames and frames into blocks. A 
block is predicted as accurately as possible by multiple methods, based 
on the quality, complexity, and maturity of the video codec. In the 
transform coding process, the predicted signals are subtracted from the 
original, which results in residual signals that represent the difference 
respectively the errors of the process, which the discrete cosine 
transform (DCT) then transforms from the pixel domain to the 
frequency domain. After the transformation, it is easier to identify high 
frequencies which will be quantized and removed, depending on the 
𝑄𝑃 setting. 𝑄𝑃{ } corresponds to the highest video quality which 
removes not much high frequencies, and 𝑄𝑃{ } corresponds to the 
lowest video quality which remove a lot medium to high frequencies. 
The reason is that the human visual system (HVS) is more sensitive to 
lower frequencies than higher frequencies. In general, high frequencies 
consume a lot of bandwidth. In many cases, a dead-zone quantizer 
(DZQ) is used, which means that the quantization around the 0 area is 
extended. This extended dead-zone acts as a noise gate—it removes 
noise, but at the same time it cuts off useful signals. When a DCT and 
a typical DZQ are used, they create artifacts and distortion. These are 
visible especially in the low-rate setup as blocking and rippling 
artifacts. Therefore, both tools, the DCT and DZQ together, compress 
the signal very well, but with higher distortion at lower bitrates. Sparse 
coding is a reconstruction of a given signal 𝑦 ∈ 𝑅  (𝑛 is the signal 
dimension) by a linear combination of the coefficients of sparse vector 

𝛼 ∈ 𝑅𝐾 (𝐾 = number of coefficients), from an overcomplete 
dictionary 𝐷 ∈ 𝑅  × . A dictionary is a matrix with dimension 𝑛 times 
𝐾. Sparse means that vector 𝛼 ∈ 𝑅𝐾, which is a collection of 
coefficients, should have as few coefficients as possible (constrained 
by 𝐿0 norm). A coefficient is a combination of an index, which points 
to the column/atom of a dictionary, and a value or multiplicity, which 
indicates the magnitude. This dictionary atom is multiplied and then 
added to the reconstructed signal 𝑦 ∈ 𝑅 . To find a sparse vector 𝛼, 
the following equation is used to approximate the reconstructed signal 
to the original signal 𝑦: 

‖𝑦 − 𝐷𝛼‖
 
𝑠. 𝑡. ‖𝛂‖  ≤ 𝜀,   (1) 

where ‖ ∙ ‖  represents the 𝐿2 norm and ‖ ∙ ‖  the 𝐿0 pseudo norm. 

However, the process of finding the sparsest possible 𝛼 vector to solve 
equation (1) is a NP-hard problem [1]. There are alternatives to a brute 
force approach; the most well-known are as follows: matching pursuit 
(MP) [2], basic pursuit (BP) [3], or orthogonal matching pursuit 
(OMP) [4]. OMP tries to solve this issue in linear time, but the 
complexity is high [5]: 
 

𝑂(𝑆𝑇 + 𝑆(𝑛 + 𝐾) + 𝑆 )    (2) 
 
where 𝑆 is the sparsity constraint, 𝐾 is the number of atoms of the 
dictionary, 𝑛 is the signal dimension, and 𝑇  is the time for updating a 
residual in an iteration. Sparse coding in general performs better—in 
low-to-medium frequency/energy (LMFE) signals—in terms of the 
mean-squared error (MSE) between the original and reconstructed 
signals, in comparison to DCT + DZQ. Additionally, if the sparsity is 
low, it is more cost efficient in a rate-distortion optimization (RDO) 
sense. General side effects of sparse coding for lower-to-medium 
bitrates are blurriness and a loss in detail. Sparse coding in general has 
a problem with a higher complexity and, in contrast to DCT + DZQ, 
the sparse coefficient dictionary index has a uniform distribution. This 
means it cannot be compressed efficiently—especially with a typical 
context-adaptive binary arithmetic coding (CABAC) engine, which is 
considered close to optimal in the lossless compression regime. The 
coefficient index cannot be compressed lossy because it must be 
precise. Therefore, CABAC needs to be turned off for these sparse 
coefficient atom indices. This contrasts with DCT + DZQ, where 
almost all side information can be encoded with the CABAC engine 
turned on, and the difference is significant.  
 

The proposed semi-extreme dictionary training (SEDT) process in 
this work uses K-means clustering singular value decomposition 
(KSVD) [6]. A dictionary has the dimension 𝐷 ∈ 𝑅    (𝑛 is the signal 
dimension and 𝐾 is the number of atoms). The first step is to generate 
training data from a separate High Efficiency Video Coding (HEVC) 
training run (proposed method turned off) where the residual data, 
before quantization for each block size, is written to disk if the absolute 
sum of this block is bigger than 0. The second step is to initialize the 
empty dictionary 𝐷 ∈ 𝑅  ×  (8 × 8 block size) by a random 
selection of the gathered training data. The third step, is to make the 
current dictionary better by minimizing the error further, with singular-
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value decomposition (𝑆𝑉𝐷). 𝑆𝑉𝐷 is 𝑈𝛴𝑉  where 𝑈 is the orthogonal 
basis vectors, 𝛴 is the singular values (eigenvalues squared), and 𝑉  is 
the set of eigenvectors. 𝑈 represents the orthogonal basis vectors, 
sorted in order of decreasing ability to represent the variance in the 
dataset. The finding of 𝑈 is taken to update the dictionary. The fourth 
step is to check if the number of predetermined iterations has reached 
a specific threshold—or if the error went below a specific threshold—
and if not, jump back to step three and repeat until the number does. If 
so, the dictionary 𝐷 is finished. 
 

This paper distinguishes between two major content areas: Camera 
Capture Content, which is handled by HEVC (HM-16.18) [7], and 
screen content, which is handled by HEVC-Screen Content Coding 
(HEVC-SCC) (HM-16.18+SCM-8.7) [8], which is an extension of 
HEVC. HEVC and HEVC-SCC have the same software architecture. 
HEVC-SCC is basically an extension of HEVC that adds important 
screen content coding tools, like the following (explained in [9]): 

● Adaptive Color Transform (ACT) 
● Adaptive Motion Vector Resolution (AMVR) 
● Cross-Component Prediction (CCP) 
● Intra Block Copy (IBC) 
● Palette Mode (PM) 
● Residual Rotation (RR) 
● Residual Differential Pulse Code Modulation (RDPCM) 
● Transform Skip (TS). 

 
The idea is to take advantage of screen content like graphics, text, 
mixed content, and animation, because it has some important 
properties [9]: 

● no sensor noises 
● large uniform flat areas 
● many repeated patterns 
● highly saturated and limited colors 
● high contrast 
● discrete tones 
● sharp edges,  
● high frequencies in certain regions  

 
In this paper we propose a semi-extreme sparse coding (SESC) 

method for video compression that uses sparse coding as an alternate 
transform to DCT. The decision whether to use the proposed method 
or DCT is based on a RDO decision, which is an important tool in 
video compression:  

 
𝑗(𝐾)  =  𝑑(𝐾)  +  𝜆𝑟(𝐾)   (3) 

𝜆 = 0.57 × 2
𝑄𝑃−12

3.0     (4) 
 

where 𝐾 is the number of nonzero coefficients and 𝑄𝑃{ , , , } is 
the quantization parameter. The idea of RDO [8, 10], as depicted in 
formulas (3) and (4), is to calculate an overall cost 𝑗(𝐾) for a specific 
combination of distortion 𝑑(𝐾), which is the MSE between the original 
and reconstructed image block;  the number of bits needed 𝑟(𝐾) (after 
entropy coding); and 𝜆, the Lagrange multiplier, which controls the 
balance between distortion and number of bits. SESC is implemented 
with an in-loop quantization (ILQ) approach that helps to reduce 
complexity. The whole proposed method is separated into three parts: 
training, analysis, and encoding. All parts are optimized for LMFE 
signals, emphasize sparsity over distortion (SoD), and are strictly 
limited to a maximum upper bound (MUB4) of only four sparse 
coefficients (regardless of block size and 𝑄𝑃{ , , , } setting). The 
SEDT process is additionally adjusted by the following modules: a 
category approach (CAT) where the test sequences are grouped into 
categories based on the common test conditions (CTC) [11, 12]; 

training data is down-sampled by a unique down-sampling approach 
(QPD), which optimizes the training data and converges/generalize the 
training process faster and creates a semi-extreme dictionary that 
emphasizes sparsity over distortion; and extremely overcomplete 
dictionaries, with a k-size of 2,048. The analysis process is additionally 
supported by the following modules: a residual classifier (RClass) 
which passes LMFE signals and a 𝜆 Lagrange multiplier adjustment 
(LMA) which emphasizes sparsity over distortion. Moreover, the 
encoding process uses a sparse coefficient quantization process (SQP), 
which utilizes only a subset of the standard rate-distortion optimized 
quantization (RDOQ) standard process. The coefficient encoding for 
the proposed method relies on an adapted sparse coefficient encoding 
process (ACP), which uses the standard transform coding process with 
optimizations and its own context models for CABAC encoding.  
 

The remainder of this paper is organized as follows: section II 
investigates related works, section III explains the proposed method, 
section IV depicts implementation details, section V presents 
experimental results, and section VI provides the conclusion. 

II. RELATED WORK 

Sparse coding as a research area is remarkable, incorporating 
numerous subtopics for use in many applications. We concentrate on 
sparse coding in video compression. Sparse coding is used for the 
transform coding of the inter part (temporal, video), and intra part 
(spatial, video, and image). Video coding includes both parts: inter and 
intra, but in many cases sparse coding research in video compression 
concentrates on the inter part [5, 13-18]. The intra part is usually 
researched in depth by image coding. One conference paper from Kang 
et al., uses sparse coding for inter and intra [19] coding, and our 
research [20] compressed only the intra part. Veterli and Kalker were 
one of the first, in 1994 [18], to research the possibility of using 
matching pursuit in video coding, based on the findings of Mallat and 
Zhang [2] from 1993, before Bergeaud and Mallat [21] came up with 
a similar idea to use matching pursuit in image compression in 1995. 
They used a constructed dictionary with prototype waveforms, which 
learns from past frames, to compress motion prediction transform 
residuals. They also used a matching pursuit algorithm with a RDO 
cost calculation. Neff and Zakhor investigated, in their 
conference/journal papers [16, 17], matching pursuit for very low 
bitrates, with dictionaries of 2-D separable Gabor functions, to 
compress motion residual blocks. They replaced the DCT transform 
completely with the matching transform. Their proposed method is 
used to compress at very low bitrates, and they replace the DCT 
transform, instead of adding another alternate sparse coding/matching 
pursuit transform, which is nowadays a valid solution. Al-Shaykh et 
al. [22] expand on the idea from [16, 17] to scalability and arbitrary 
shape coding. Kang et al. was one of the first in video compression in 
2011 [19] to train a dictionary by KSVD, and they used MP to code 
inter and intra prediction residuals. It replaces the core transforms 
through an adaptive mixed transform scheme. Their follow-up paper 
[5], expanded on this idea and put DCT and sparse coding in a 
sequence for a two-layered approach. Xiong et al. based their work 
[23] on a super-resolution paper [24] from Yang et al. and used a three-
layer approach for low- to high-frequency dictionaries. In their paper 
[15], Xue and Wang investigated OMP in combination with a self-
adaptive dictionary for inter-motion residuals. They included the DCT 
transform matrix in their dictionary, which combined DCT and their 
proposed method into one solution. Song et al. elaborated in [14] on 
anisotropic correlations (high frequencies/sharp edges), and they were 
the first to create a mixed DCT/Sparse coding approach, determined 
by a RDO calculation. Zhang and Yeh loosely investigate in [13] the 
work of Kang [5, 19], an adaptive dictionary learning approach for 
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inter-prediction residuals, which are learned from a previous intra-
frame. The significant difference with the other research is that the 
created dictionaries have only 16 atoms, for all block sizes from 4 × 4 
to 32 × 32, which represents an undercomplete dictionary, which is 
usually not considered sparse coding because a fundamental property 
of sparse coding is the use of an overcomplete dictionary. We elaborate 
in [20], on the use of sparse coding for screen content coding in video 
compression for intra-prediction residuals. In this paper, we extend our 
proposed method to inter-prediction residuals and to camera captured 
content and other improvements. 

III. PROPOSED METHOD 

Using sparse coding as an alternate transform for prediction 
residuals in video compression does not guarantee bitrate savings; 
there is a limited range which creates BD-rate savings. In many cases 
a sparse coding setup expands rather than compresses. A significant 
reason for this is that the standard transform coding process, which 
uses DCT + DZQ in combination with CABAC encoding, performs 
well and has improved over the last 50 years, which makes the standard 
process very efficient. An alternative sparse coding transform needs at 
least one bit that signals either that the proposed method is used (Flag 
= 1) or that the standard method is used (Flag = 0). This creates an 
additional overhead for all blocks and block sizes, even if the proposed 
method is used only for around 20% of the blocks, although 100% of 
all blocks need that additional flag (turned on/off). Another problem is 
that a sparse coefficient dictionary index has a uniform distribution, in 
contrast to DCT + DZQ coefficients, so it needs to be encoded with a 
fixed length (CABAC bypass). The fixed length encoding makes it 
unlikely for use in the high frequency or high quality setting.  

A. Semi-Extreme Sparse Coding (SESC) 
To get as close as possible to an extreme sparse representation, the 

proposed method follows the following three important rules. First, the 
proposed method targets only LMFE signals, because the number of 
sparse atoms are very limited based on the assumption that DCT + 
DZQ is not optimal for LMFE signals and that sparse coding is better 
in this signal range, if and only if the sparse approximation is as sparse 
as possible. The reason for this low sparsity constraint is due to the 
uniform distribution of the sparse coefficient indices. These indices 
needs to be encoded and compressed into the bitstream in fixed length 
(CABAC bypass), which is a problem because the proposed method 
RDO competes with DCT, where almost all information are encoded 
with the CABAC engine on, meaning that DCT coefficients can be 
encoded much more efficiently than sparse-coded coefficients. Some 
researchers try to alleviate this problem by using Huffman coding 
[5,16-17, 22], but in general the indices distribution is uniform, which 
makes its efficient compression difficult. Second, the SoD approach—
as a result of the aforementioned sparsity constraint—necessitates that 
the proposed method needs to make the sparse coding part as sparse as 
possible even if distortion increases. To achieve this, we adjusted the 
Lagrange multiplier λ, which is shown in formula (3) and (4) and has 
the property to balance both the distortion and the number of bits in 
the RDO cost calculation. The proposed method adjusts 𝜆 towards SoD 
because of the uniform distribution of the sparse coefficient indices. 𝜆 
is increased by +5% for all block sizes and 𝑄𝑃{ , , , } settings. The 
selection of the 𝑄𝑃{ , , , } parameter are based on the CTC [11, 
12] requirements. This adjustment is only used for the proposed 
method-encoded blocks; the standard HEVC and HEVC-SCC use the 
original 𝜆 value. Third, because the MUB4 strictly limits the maximum 
number of sparse coefficients to four for all block sizes and 
𝑄𝑃{ , , , } settings, this unusual low upper  bound limit of sparse 
coefficients makes it unlikely that the proposed method is used for any 
high frequency block. 

B. Semi-Extreme Dictionary Training (SEDT) process 
The SEDT process uses KSVD, is optimized for SoD, and focuses 

on LMFE, using a novel QPD approach, which is an important 
optimization, to take training data from a higher quantization setup, to 
then be used for the test execution. In general, higher quantization 
encourages a sparser representation because—with a higher 𝑄𝑃 
setting, which means lower quality—the intra/inter-prediction 
residuals are much more quantized, so that they get smaller, and 
coarser, which is better for the learning process. Furthermore, KSVD 
converges/generalize much faster to the given signal. This approach is 
inspired by a down-sampling method from Xiong et al. [23], but they 
down-sampled the resolution of the frames themselves and used this 
down-sampled signal for their dictionary-learning process. The 
proposed method instead lowers the quality and does not down-sample 
the resolution.  

 

 
Fig. 1. quantization parameter (QP) original value to QPD value 

In Fig. 1 the used 𝑄𝑃 original to QPD settings are shown. 𝑄𝑃{ } 
test execution used 𝑄𝑃{ } training data because it is not relevant at all, 
reason is that the partial BD-rate savings for this 𝑄𝑃 setting are always 
limited and approximately around 0.1% to 0.3%, which is 
insignificant. 𝑄𝑃{ } test execution used the training data from 𝑄𝑃{ } 
because it is a better quality setup and profits from training data which 
is closer to the original setting. 𝑄𝑃{ , } test execution is considered 
lower quality and can be trained by 𝑄𝑃{ } which represents the lowest 
quality training data. Another major part of this process involves the 
creation of extremely overcomplete dictionaries with a bigger number 
of 𝐾 atoms, which gives the KSVD/OMP algorithm [4, 6] more overall 
atoms to choose from. The reason for this is that, when a dictionary 
can offer a bigger variety of building blocks, the average sparsity is 
lower. The KSVD training process [6] offers only limited amount of 
hyper-parameters to adjust the learning process to a specific range of 
signals: 

● 𝐾 size is the number of atoms in the dictionary 
● 𝑙 is the number of sparse atoms used for the internal OMP 

algorithm to calculate the error 
● i is the number of iterations to execute 

 
The dictionary 𝐾 size is 2,048; the number of atoms is set to two, 

with 800 iterations per dictionary. Parameter 𝑙 is significant because it 
is the number of sparse coefficients that the internal KSVD algorithm 
uses for executing the OMP part, which is responsible for the learning 
update and for calculating the distortion. If 𝑙 is set to a very low number 
like two, which we selected for our method, it encourages sparsity and 
requires less bits, although it tends to have higher distortion. In 
contrast, if 𝑙 is set to a higher number like 16, a dictionary needs on 
average more sparse coefficients and more bits to create a signal with 
low distortion. Distortion can be minimized by the number of training 
epochs. All of these parts of our SEDT process create dictionaries that 
are optimized for low sparsity with as few bits as possible. 
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C. Proposed Method Block Diagram 

Fig. 2 shows the block diagram of the proposed method. It is separated 
in three parts: (a) shows the standard DCT transform and coding 
process; (b) shows the proposed method transform and coding process, 
which is probed if and only if DCT is selected as the candidate for 
encoding in previous step (a); and (c) shows an additional step which 
compares both costs and selects the solution with the lower cost, which 
is finally encoded in the bitstream. In general, the standard DCT 
process is executed in the following way: the original signal, which is 
represented by 𝑓 and can be any block size {4 × 4, 8 × 8, 16 ×

16, 32 × 32}, is intra/inter-predicted 𝑓. 𝑦 is the residual signal which 
is calculated by original – predicted. The standard process transforms 
the residual with DCT into the frequency domain which is represented 
as a DCT coefficient vector 𝛼. The DCT coefficients are then 
quantized into vector �̇�. The video codec then usually entropy encodes 
it into a temporary bitstream, subsequently decoding it back to vector 
𝛼 and inverse quantizing it into vector 𝛼. Inverse DCT transform is 
executed, which is represented by the reconstructed residual vector 𝑦. 
To create the reconstructed signal 𝑓, 𝑦 and 𝑓 are added together. The 
distortion 𝑑 is calculated between 𝑓 and 𝑓, and the number of bits 𝑟 is 
taken from the previous executed entropy-coding process. Finally, the 
distortion 𝑗 is calculated by formula (3). This is done to simulate a 
whole transform coding process in order to get as close as possible to 
realistic numbers. The proposed method (b) makes no difference 
between intra/inter-prediction, or which modes or other parameters are 
used in the prediction process itself. A significant difference of the 
proposed method (b) to the standard DCT process (a) is that (b) uses 
an ILQ scheme. The standard process transforms the residual signal 𝑦 
in one step into the frequency domain 𝛼 and follows the process 
depicted in (a) to finally calculates the cost 𝑗. The proposed method 
does this for every finding of a sparse coefficient in a loop, and the 
loop is shown in Fig. 2 part (b) as a dotted rectangle. All loop 
dependent vectors are marked with the subscript 𝑖. This means that  

 

quantization is part of the OMP algorithm itself, which is calculated 
after every finding of a new sparse coefficient, it includes not only the 
quantization part, but also the entropy encoding/decoding process, 
inverse quantization, inverse transform, reconstruct residual, and cost 
calculation for every found sparse coefficient. The process depicted in 
Fig. 2 (b) takes the residual signal 𝑦 and executes one OMP iteration 
at a time to find the next best sparse coefficient that minimizes the 
error. With every iteration it adds one more sparse coefficient to vector 
𝛼 . It is then quantized into 𝛼𝑖̇ , entropy encoded into the bitstream, 
decoded back to 𝛼𝑖, inverse quantized into 𝛼𝑖, and then inverse 
transformed into 𝑦

𝑖
 —which represents the reconstructed residual 

signal and is then added to the predicted signal 𝑓 to represent the 
reconstructed signal 𝑓

𝑖
. The distortion 𝑑  is calculated, the rate 𝑟  is 

taken from the entropy coding process, and finally the cost 𝑗  for the 
current iteration is computed. The ILQ process searches for a local 
minimum and calculates the cost of every iteration separately. With 
every ILQ iteration, the cost is compared to the previous cost, and as 
long as the cost is going down, the next iteration is executed unless the 
cost goes up again, which would indicate that the minimal cost was 
found in the previous iteration. In this case the last sparse coefficient 
is deleted from 𝛼 , which then represents the local minimum solution. 
With every iteration of the ILQ, the cost 𝑗  is calculated by an adapted 
RDO method, where 𝜆 is increased by 5% to emphasize distortion over 
bitrate. The maximum sparsity is a global constant MUB4 and set to 
four, independent of block size or 𝑄𝑃{ , , , } setting. When the 
local minimum solution was found, the cost of the DCT and the 
proposed method approach is compared in (c), and the solution with 
the lower cost will be finally encoded into the bitstream. It is possible 
that this local minimum approach is not always sufficient because 
quantized spare coefficients are sometimes chaotic in nature, but 
MUB4 constraints represent an upper bound, that limits  the 
probability of significant error margins.

Fig. 2. Proposed Method Block Diagram 
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D. Category Approach (CAT) 
For the proposed method we used a CAT approach which is loosely 

inspired by [25], where they divided training samples into different 
subsets. Our dictionaries are trained by categories based on the CTC 
[11, 12] classes. This simultaneously simulates an application-specific 
approach and an online-learning approach. The training data, which 
includes basically all intra-predicted residual blocks with an absolute 
sum > 0, is created by a separated HM-16.18 [7] and HM-16.18+SCM-
8.7 [8] run, for the HEVC and HEVC-SCC configuration. All CTC 
[11, 12] test sequences are strictly split, with 20% of the frames for 
training purposes, which remain unseen for the test execution, and 80% 
of the frames for the test execution. These trained files are grouped and 
randomly shuffled into the mentioned categories (based on CTC [11, 
12]), which goes into an offline KSVD training process [6]). This split 
is unusual, but mixing a setup of similar test sequences in one category 
simulates noise and distortion, which would not be the case in a pure 
online learning solution, which concentrates only on the current test 
sequence. Selecting 20% as unseen training data and 80% as test data 
is an arbitrary cut, and can be minimized further, but it demonstrates 
that not much training data is needed to create a useful semi-extreme 
dictionary. We used for convenience reasons only intra-prediction 
residuals as training data.  

 
Table I  

HEVC Class A1 to D Resolutions 

HEVC Category Resolutions 
Class A1 (4K) 4096 × 2160 &  

3840 × 2160 Class A2 (4K) 
Class B (HD) 1920 × 1080 

Class E  1280 × 720 

Class C  832 × 480 

Class D 416 × 240 

Class F 1280 × 720 & 1024 × 768 & 832 × 480 
 
Table I shows for HEVC and camera-captured content; the common 
test conditions categories [11] are mainly based on their resolution.  
 

Table II  
HEVC-SCC Categories and Resolutions 

HEVC-SCC Category Resolution 
Animation (A) 1024 × 768  & 1280 × 720 
Mixed Content (MC) 1920 × 1080 & 2560 × 1440 
Text, Graphics, Motion 
(TGM720) 

1280 × 720 

Text, Graphics, Motion 
(TGM1080) 

1920 × 1080 

 
Table II shows, for HEVC-SCC, the common test condition categories 
which are mainly based on their content and not on the resolution itself 
[12]. 

E. Summary 
The originality of this research concentrates on the semi-extreme 

approach which is in contrast to the extreme sparse representation, as 
mentioned in [6], which is considered if and only if one sparse 
coefficient is used with a coefficient value of 1. This constraint seems 
to be too restricted. Semi-extreme is easing this condition because the 
sparse coefficient dictionary indices have a uniform distribution, in 
contrast to DCT + DZQ coefficients, so it needs to be encoded with a 
fixed length (CABAC bypass). The fixed length encoding makes it 

unlikely for use in the high frequency or high quality setting. As a 
consequence, the proposed method uses a novel SESC approach, 
which means in average less than two sparse coefficients are allowed 
with a non-restricted coefficient value, additional sparsity is more 
important than distortion. Other adjustments are integrated, like an 
extreme overcomplete dictionary, with 2,048 atoms. The training 
process is adapted; the proposed method targets basically only low 
frequency signals which can be in average encoded with a minimum 
of sparse coefficients. This leaves high frequency signals out of the 
process.  

IV. IMPLEMENTATION DETAILS 

A. Sparse Quantization Process (SQP) 
The standard RDOQ [10] process from HEVC is not used because 

it is not well designed to handle sparse coefficients—rather it is 
optimized to quantize DCT coefficients. Part of the difference is that 
the direct current (DC) component does not exist for sparse 
coefficients. Therefore, the RDOQ process analyzes the first sparse 
coefficient value and determines how to quantize the following sparse 
coefficient values. In general, sparse coefficient values are on average 
higher, and they strictly decrease from the most to the least important 
sparse coefficient value. This means that, if the standard RDOQ 
process is used for coding the proposed method’s sparse coefficient 
values, the first coefficient value is quantized as expected; however, 
all the following sparse coefficient values would be quantized to zero, 
with almost no exception. The proposed method uses only a subset of 
the RDOQ process, which is the Qstep calculation: 

𝑄𝑠𝑡𝑒𝑝(𝑄𝑃) = 2   (5) 

where 𝑄𝑃{ , , , } is the quantization parameter. But in general, it 
is used to calculate a staircase quantization scheme, and our SQP 
method uses it in a scalar way, which means that, per 𝑄𝑃{ , , , } 
setting, there is simply one and only one divider/multiplier for every 
sparse coefficient, independent of the importance of the coefficient. 
This is in contrast to the standard process, where the DCT quantization 
has its own quantization matrix with a different quantization for 
different DCT coefficients, depending on the position of the 
coefficients in the matrix. The reason for this is that sparse coefficients 
are organized in a linear vector and not in a coefficient matrix. 

B. Adapted Sparse Coefficient Encoding process (ACP) 
In general, all sparse coefficient indices are coded in fixed-length 

code because of the uniform distribution. The proposed coefficient 
coding process follows the “transform coefficient coding” [26] with its 
own context models and adjustments. One adjustment, for example, is 
the significance map from the transform coefficient coding process, 
which is deactivated for the proposed method because all sparse 
coefficient values are significant with no exception. The reason here is 
that if a coefficient value is quantized to zero, the whole sparse 
coefficient will be removed. 

C. In-Loop-Quantization (ILQ) 
An important difference from the standard process is the ILQ 

approach. This means that after every sparse iteration, a complete 
transform coding process is done, including quantization, CABAC 
encoding, and RDO calculation, based on formulas (3), (4) and (5), as 
depicted and explained in Fig. 2. An in-loop quantization has a 
deadlocking problem [27], which is prevented by comparing every 
newly found sparse coefficient with the previously found coefficient. 
If the coefficients are the same, this stops the loop, and returns the 
previous cost calculation finding. 
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D. Residual Classifier (RClass) 
To save computation time, we create RClass which analyses the 

DCT residuals for LMFE signals. The reason is that the complexity, 
especially in the analysis phase, is very high due to a multitude of 
permutations being tested. RClass saves complexity by passing LMFE 
signals. The task is to check every candidate residual block to see if it 
is suitable for the proposed method. The classifier calculates the 
absolute sum, after quantization, of the DCT residuals; if the sum is in 
a specific range—above the lower and below the upper bound—then 
the block is allowed to be probed by the proposed method. The lower 
and upper bound are uniquely adapted for every 𝑄𝑃{ , , , } settings 
and every block size, based on a statistical analysis.  

V. EXPERIMENTAL RESULTS 

A. HEVC/HEVC-SCC versus VVC 
The proposed method is implemented in HEVC HM-16.18 [7] and 
HEVC HM-16.18+SCM-8.7 [8]. This research chooses HEVC instead 
of the VVC standard due to its wide deployment currently. Also, 
HEVC is less code and module complex, and the run time complexity 
of VVC is 7.4x to 34.0x as complex as HEVC [28, 29], which would 
be a significant time issue while testing all tests of the common test 
conditions with the available test hardware.  

 
Fig. 3. Complexity of VVC compared to HEVC [30] 

Additionally, as can be seen in Fig. 3, the execution time of the All 
Intra test scenario is even much higher, which would additionally 
significant increase the overall test time because the proposed method 
is more focused on the intra part.  

 
Fig. 4. The concept of 2D separable transforms selection in VVC. [31] 

Fig. 4 shows the VVC transforms which has more options to 
choose from in contrast to HEVC which has only a small subset 
of these options. With more choice the VVC standard has an 
advantage over the HEVC standard, which would have an 
impact on the outcome of the proposed method results. 

B. Max and Min Test Setups  
We constructed a Maximum-BD rate setup (Max-BD) which consider 
maximum BD-rate savings, and a Minimum-Execution time setup 
(Min-Exe) for which the execution time was considered. Both setups 
were integrated on HEVC HM-16.18 [7] and HEVC HM-16.18+SCM-
8.7 [8], which strictly follows the CTC [11, 12]. The Max-BD setup 
was used for intra and inter signals, for all 𝑄𝑃{ , , , } settings, all 
block sizes {4 × 4, 8 × 8, 16 × 16, 32 × 32}, and all test setups: 
AllIntra (AI), RandomAccess (RA), LowDelayB (LDB), and 
LowDelayP (LDP) which is only used in HEVC. The major difference 
between the two implementations, HEVC and HEVC-SCC, is that 
HEVC-SCC uses a variety of tools that are specialized for compressing 
screen content. The proposed method for HEVC-SCC was tested only 
with the 4:2:0 color scheme, which means that four of seven screen 
content tools were activated: TS, RDPCM, IBC, and PM. Some 
elements for the Min-Exe test setup, are excluded. Block size 4 × 4 
was not activated, the reason being that block size 4 × 4 has the lowest 
execution time overhead at around 4%, and that it does not compress 
enough—usually around 0.1% BD-rate savings for HEVC-SCC, or 
0.2% BD-rate savings for HEVC. The BD-rate savings for 𝑄𝑃{ }, was 
always very low because it is the high quality setup and as a 
consequence the number of sparse coefficients raised significantly, 
which was a problem because the sparse coefficient indices were coded 
in fixed length (CABAC bypass). As an outcome, the BD-rate savings 
for 𝑄𝑃{ } is approximately close to around 0.1% to 0.3%. In general, 
while the number of sparse coefficients get higher the encoded 
efficiency for the proposed method goes down significantly. The 
number of sparse coefficients reflects linearly the quality of the 
outcome. As a rule, the higher the frequency (sharp edges) of a signal, 
the more sparse coefficients needed to reconstruct it. A signal can be 
perfectly reconstructed, even in a high frequency case, when the 
dimension of a signal is the same as the number of sparse coefficients. 
But in this case, the compression rate is worse than the standard 
method. The key is to be as sparse as possible. Therefore, 𝑄𝑃{ } was 
deactivated for the Min-Exe setup. Nonetheless, block size 32 × 32 
performed well, but the execution time expanded exponentially. So, 
for the Min-Exe, 32 × 32 was also deactivated.  
 

Table III 
Major differences between the two test sets 

 Max-BD Min-Exe 
 High BD-rate savings Min execution time  
Block sizes {4 × 4, … , 32 × 32} {8 × 8, 16 × 16} 
𝑄𝑃 settings {22, 27, 32, 37} {27, 32, 37} 
Residual 
Classifier 

No Yes 

Chroma No No 
 
Table III shows the major differences between the two test setups Max-
BD and Min-Exe.  
 

In general, we tried to follow the CTC [11, 12] strictly, and tried to test 
as much as possible. The only difference is that this research used the 
first 20% of a test sequence for training purpose and selected the 
remaining unseen 80% of the test sequence frames for testing. This 
tends to be closer to a realistic less biased test towards an online 
learning approach, which uses the first frames for training and 
improves with every frame the dictionary. This was done on the 
encoder as wells as on the decoder side in the same way. 
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Table IV 
All HEVC and HEVC-SCC test results 

 
Table IV shows the major test results, for HEVC and HEVC-SCC, 
against the standard test runs using CTC [11, 12]. In general, the results 
are organized in the following way. The “Test Name” specifies the test 
setup and various details about it. First, the prefix HEVC stands for 
camera-captured content and “SCC” for screen content. Second, the 
kind of test—AI, RA, LDB, and LDP which is used only for  

 
HEVC. Third, the block sizes the proposed method is using—either 
({4 × 4, … , 32 × 32}) or ({8 × 8, … , 16 × 16}). Fourth, test setup, 
which is either Max-DB or Min-Exe. The next column is the BD-rate 
savings. The next columns give more information about the details for 
each block size: {4 × 4, 8 × 8, 16 × 16, 32 × 32}, which reveals the 
numbers of intra and inter blocks compressed by the proposed method  

Test Name 
Luma 

BD-rate 
Block 
Size 

Intra OMP 
Used 

%  

Inter OMP 
Used 

%  

Avg 
Sparsity 

Execution Time 

OMPFlag1 OMPFlag0 OMPFlag1 OMPFlag0 Encoder Decoder 

SCC_AI4x32_Max-BD -4.766 % 

4x4 3,526,548 53,236,429 6.6%       1.19 

1,021% 4,993% 
8x8 4,787,222 13,862,871 34.5%       1.52 

16x16 2,457,848 5,171,209 47.5%       2.17 
32x32 991,806 2,074,050 47.8%       2.58 

SCC_RA4x32_Max-BD -3.234 % 

4x4 116,601 3,515,124 3.3% 8,824 10,492,210 0.1% 1.22 

1,390% 7,421% 
8x8 176,313 813,168 21.7% 110,389 1,037,164 10.6% 1.52 

16x16 84,259 327,977 25.7% 37,333 477,844 7.8% 2.10 
32x32 33,767 205,019 16.5% 13,536 310,693 4.4% 2.48 

SCC_LDB4x32_Max-BD -2.578 % 

4x4 30,544 1,265,479 2.4% 19,970 12,685,192 0.2% 1.11 

1,381% 10,236% 
8x8 64,967 328,873 19.8% 164,964 1,703,677 9.7% 1.35 

16x16 29,871 176,076 17.0% 60,302 922,787 6.5% 1.66 
32x32 14,896 166,717 8.9% 26,759 584,217 4.6% 1.99 

SCC_AI8x16_Min-Exe -2.501 % 
8x8 3,869,633 9,068,174 42.7%       1.54 220% 244% 

16x16 2,337,254 4,177,609 55.9%       2.23 

SCC_RA8x16_Min-Exe -1.534 % 
8x8 145,617 506,463 28.8% 118,796 461,347 25.7% 1.47 

270% 352% 
16x16 90,090 320,086 28.1% 52,022 469,793 11.1% 1.98 

SCC_LDB8x16_Min-
Exe -1.114 % 

8x8 53,372 169,590 31.5% 170,513 788,590 21.6% 1.29 
247% 371% 

16x16 25,982 110,144 23.6% 64,171 521,664 12.3% 1.61 

HEVC_AI4x32_Max-BD -5.525 % 

4x4 14,437,493 277,364,683 5.2%       1.10 

3,276% 10,513% 
8x8 27,562,097 136,790,051 20.1%       1.34 

16x16 15,970,839 56,120,009 28.5%       1.57 
32x32 5,386,339 25,186,027 21.4%       1.98 

HEVC_RA4x32_Max-
BD -2.476 % 

4x4 1,047,441 31,257,980 3.4% 68,529 14,978,562 0.5% 1.12 

1,836% 10,592% 
8x8 2,985,636 16,274,568 18.3% 809,187 12,028,761 6.7% 1.30 

16x16 2,223,144 8,826,824 25.2% 715,090 7,931,077 9.0% 1.49 
32x32 652,800 4,639,018 14.1% 255,620 4,602,167 5.6% 1.78 

HEVC_LDB4x32_Max-
BD 

-4.620 % 

4x4 796653 19632338 4.1% 309868 39458604 0.8% 1.12 

1,805% 18,170% 
8x8 2657428 11678910 22.8% 2411411 24886063 9.7% 1.30 

16x16 1945721 7184906 27.1% 1720925 15619769 11.0% 1.49 
32x32 538643 3587575 15.0% 7494 662500 1.1% 1.78 

HEVC_LDP4x32_Max-
BD 

-4.641 % 

4x4 873,646 22,563,381 3.9% 285,409 44,675,472 0.6% 1.12 

2,696% 26,693% 
8x8 3,050,409 13,951,111 21.9% 2,142,065 26,163,711 8.2% 1.30 

16x16 2,359,404 8,586,423 27.5% 1,504,331 14,947,719 10.1% 1.49 
32x32 636,430 4,187,715 15.2% 532,050 7,900,674 6.7% 1.78 

HEVC_AI8x16_Min-
Exe 

-2.750 % 
8x8 21,519,766 68,766,993 31.3%       1.26 486% 307% 

16x16 15,627,731 39,638,053 39.4%       1.51 

HEVC_RA8x16_Min-
Exe 

-0.961 % 
8x8 1,939,316 6,813,799 28.5% 423,412 2,983,070 14.2% 0.78 

253% 432% 
16x16 1,793,628 5,099,246 35.2% 490,959 3,120,249 15.7% 1.40 

HEVC_LDB8x16_Min-
Exe 

-1.808 % 
8x8 1,883,832 4,790,684 39.3% 1,127,614 6,307,114 17.9% 1.17 296% 677% 

16x16 1,593,832 4,062,323 39.2% 1,232,370 6,841,544 18.0% 1.33 

HEVC_LDP8x16_Min-
Exe 

-1.789 % 
8x8 2,046,142 5,397,039 37.9% 998,235 6,607,593 15.1% 1.16 

406% 927% 
16x16 1,829,219 4,720,432 38.8% 1,053,868 6,622,729 15.9% 1.32 

Averages -2.878 %   3,576,052 21,014,646 24.4% 564,534 9,226,419 9.4% 1.52 1,113% 6,566% 
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for every block size and test execution. It also shows the percentage of 
the blocks used by the proposed method, and the average sparsity per 
block size and test setup. 
 
Remarkable for Table IV is that, in general, all AI test executions have 
the most blocks overall. The reason is that the inter part has in many 
cases only a limited number of blocks because they are encoded in a 
different way. The low number/percentage of proposed coded blocks 
for the 4 × 4 block size reflects that 4 × 4 only minimally contributes 
to the outcome. This is because the training data for this block size is 
much bigger, and the KSVD algorithm cannot converge/generalize to 
create an efficient semi-extreme sparse dictionary. AI always performs 
best because there are a lot of blocks to probe and encode with the 
proposed method. RA performs well because it has more intra frames 
regularly inserted into the bitstream, and LDB performs well too. 
Significant is that the average proposed method block usage is 24.4% 
for intra and 9.4% for inter. MUB4 for all block sizes and 
𝑄𝑃{ , , , } settings are four and, on average, the proposed method 
uses only 1.5 sparse atoms per block, which is very low and reflects 
that this is close to the extreme sparse representation explained in [6], 
which represents our semi-extreme sparse coding proposed method. 
This also shows that no high-frequency signals are encoded by the 
proposed method. In general, bigger block sizes lead to bigger BD-rate 
savings. The difference between the percentage of blocks encoded by 
the proposed method for intra which is 24.4% and for inter which is 
9.4%, is remarkable. The reason for the difference is on one hand, that 
our convenient approach to simply use the intra trained dictionaries 
also for encoding inter blocks is not sufficient enough. On the other 
hand, intra residual data has more energy than inter residual training 
data. As a consequence, the inter training process needs to be 
optimized further to increase the proposed method selection to a higher 
percentage. The execution time for the Max-BD setup is high and 
extends the original execution time by a factor of 11 to 33. 𝑄𝑃{ } does 
not perform well, because it is the highest quality, which means that 
the lowest distortion is needed. However, if more sparse coefficients 
are needed, it creates a problem because every sparse coefficient index 
is encoded in fixed length (CABAC bypassed), which creates too much 
overhead. And additionally there is a max sparsity limitation of four 
(MUB4). This is the reason the proposed method is not used much, and 
[5, 19] make similar observations. In general, 𝑄𝑃{ } performs the best. 
The reason that 𝑄𝑃{ } does not perform that well, in comparison to 
𝑄𝑃{ }, is that for 𝑄𝑃{ }, the limiting factor is not the distortion, but 
the bits for encoding. Not many bits are allowed. 
 

Table V 
Detailed BD-rate savings of “SCC_AI4x32_Max-BD“ test. Broken 
down by separate test sequences compared to HM-16.18+SCM-8.7 

Compression Ratio (CR) 

   CR BD-rate 
savings1 

Video Sequence Category Resolution 1: luma % 

BasketballScreen MixedContent 2560 × 1440 1.09 -15.5% 
MissionControl2 MixedContent 2560 × 1440 1.02 -4.3% 
MissionControl3 MixedContent 1920 × 1080 1.04 -8.0% 

FlyingGraphics TGM1080 1920 × 1080 1.00 -0.1% 
Desktop TGM1080 1920 × 1080 1.02 -2.6% 
Console TGM1080 1920 × 1080 1.00 0.0% 
ChineseEditing TGM1080 1920 × 1080 1.03 -3.7% 

WebBrowsing TGM720 1280 × 720 1.05 -6.0% 
Map TGM720 1280 × 720 1.06 -8.3% 
Programming TGM720 1280 × 720 1.02 -3.4% 
SlideShow TGM720 1280 × 720 1.00 -0.6% 

Robot Animation 1280 × 720 1.00 -0.3% 
ChinaSpeed Animation 1024 × 768 1.05 -9.2% 

 
Table V shows the detailed results for the test execution of Table IV 
test “SCC_AI4x32_Max-BD”. The percentage relation is similar 
through all other test executions. The outliers: FlyingGraphics, 
Console, SlideShow, and Robot show 0% and up to 0.6% BD-rate 
savings. One positive outlier is BasketballScreen with 15.5% BD-rate 
saving, which is remarkable. In the case of SlideShow, it is simply that 
the test sequence is dominated by big, white one-color areas where the 
proposed method cannot compete against DCT + DZQ + CABAC. The 
console test sequence is a different example which contains a lot of 
text and simple graphic elements and is thus not frequently selected by 
the proposed method a lot. A general reason for these outliers is mostly 
that the category boundaries based on the CTC [12] categories are not 
performing well for all test sequences.  
 

Table VI 
Detailed BD-rate savings of “HEVC_AI4x32_Max-BD” test. Broken 

down by separate test sequences compared to  
HM-16.18+SCM-8.7 

Compression Ratio (CR) 

Video Sequence Category 
Class 

Resolution CR 
1: 

BD-rate 
savings1 
luma % 

Tango A1 4096 × 2160 0.99 -0.6% 

Drums100 A1 3840 × 2160 1.00 -0.3% 

CampfireParty A1 3840 × 2160 1.00 -0.7% 

ToddlerFountain A1 4096 × 2160 1.00 -0.3% 

CatRobot A2 3840 × 2160 1.00 0.0% 

TrafficFlow A2 3840 × 2160 1.05 -0.0% 

DaylightRoad A2 3840 × 2160 1.00 -0.3% 

Rollercoaster A2 4096 × 2160 1.00 -1.0% 

Kimono B 1920 × 1080 1.00 -0.3% 

ParkScene B 1920 × 1080 1.00 -0.2% 

Cactus B 1920 × 1080 1.08 -14.3% 

BasketballDrive B 1920 × 1080 1.00 -0.6% 

BQTerrace B 1920 × 1080 1.00 -1.0% 

FourPeople E 1280 × 720 1.15 -23.4% 

Johnny E 1280 × 720 1.09 -15.1% 

KirstenAndSara E 1280 × 720 1.10 -15.0% 

BasketballDrill C 832 × 480 1.14 -30.4% 

BQMall C 832 × 480 1.00 -0.3% 

PartyScene C 832 × 480 1.00 -0.1% 

RaceHorses C 832 × 480 1.00 -0.2% 

BasketballPass D 416 × 240 1.00 -0.3% 

BQSquare D 416 × 240 1.00 -0.3% 

BlowingBubbles D 416 × 240 1.00 -0.1% 

RaceHorses D 416 × 240 1.00 -0.1% 

BasketballDrillText F 832 × 480 1.13 -27.3% 

ChinaSpeed F 1024 × 768 1.07 -10.6% 

SlideEditing F 1280 × 720 1.10 -11.4% 

SlideShow F 1280 × 720 1.00 -0.8% 

 
Table VI shows the detailed results for each test sequence and category 
of Table IV test “HEVC_AI4x32_Max-BD” execution. For camera-
captured content, 8 of 24 test sequences are outliers in regard to the 
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upper bound, and the rest of the test sequences are between 0.0% and 
1.0% BD-rate savings. This is in part a problem of the category 
composition for HEVC in CTC [11], which is based on the resolution 
and not on the similarity of the content as it is in HEVC-SCC. ClassF 
is a good example that performs very well with almost every test 
sequence except SlideShow. The reason SlideShow does not perform 
well is already explained, because most of the content is simply white 
background. It can be assumed, if the category selection is based on 
the content and not on the resolution, that the HEVC test sequences 
would perform in a more balanced manner with similar overall BD-
rate savings as for HEVC-SCC.  
 
For the RDO curves we used the Bjøntegaard model [32] where we 
transformed the PSNR into a logarithmic scale (dB).  
 

 
Fig. 5. HEVC-SCC: AI - MixedContent – BasketballScreen test 
sequence RDO curve for Min-Exe and Max-BD to reference run 

 
Fig. 6. HEVC-SCC: RA - MixedContent - MissionControlClip3 test 
sequence RDO curve for Min-Exe and Max-BD to reference run. 

 
Fig. 7. HEVC-SCC: LDB - MixedContent – BasketballScreen test 
sequence RDO curve for Min-Exe and Max-BD to reference run 

 
Fig. 8. HEVC: AI - ClassC - BasketballDrill test sequence RDO 
curve for Min-Exe and Max-BD to reference run. 

 
Fig. 9. HEVC: RA – ClassF - SlideEditing test sequence RDO curve 
for Min-Exe and Max-BD to reference run. 

 
Fig. 10. HEVC: LDP – ClassF – BasketballDrillText test sequence 
RDO curve for Min-Exe and Max-BD to reference run. 

By comparing the curves in Fig. 5 to Fig. 9, a general tendency is that 
as mentioned before the compression at higher PSNR values gets 
closer to zero, which is an outcome of the demand for more sparse 
atoms, so that the proposed method is not used overall.  
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C. Contribution of the proposed method parts 

Here we provide a quick overview of which parts are contributing 
how much to BD-rate saving terms. These tests were conducted with 
the HEVC-SCC AI test setup. 

 
Table VII 

Different parts of the proposed method and their impact on BD-rate 
savings tested with HEVC-SCC AI Max-BD setup 

 Test  BD-rate savings Execution 
Time 

1 Dic K-Size 512 -1.893% 842% 
2 Dic K-Size 1,024 -3.151% 887% 
3 Dic K-Size 2,048 -4.765% 1,021% 
4 Block Size 4x4 -0.050% 103% 
5 Block Size 8x8 -0.802% 141% 
6 Block Size 16x16 -2.070% 257% 
7 Block Size 32x32 -1.567% 494% 

9 𝝀 -5% (LMA) -4.658% 1,000% 
10 𝝀 0% (LMA) -4.747% 1,037% 
11 𝝀 +5% (LMA) -4.765% 1,021% 
12 𝝀 +10% (LMA) -4.757% 1,086% 

13 QPD off  -2.641% 1,036% 
14 Chroma On Around -1% for 

chroma parts 
1,103% 

15 PON (palette mode on) -3.641% 1,149% 
16 TON (transform skip TS 

on) 
-5.048% 1,738% 

17 TRON (TS & residual 
rotation on) 

-4.540% 1,707% 

18 ION (IBC on) -6.009% 1,130% 
19 All SCC tools off -11.764% 1,853% 

 
Table VII shows BD-rate and complexity numbers for various test 
setups. Tested with the Max-BD test setup on HEVC-SCC AI, Tests 
1-3 show the impact of the K-size of a dictionary. The complexity 
increases for higher K-sizes, but at the same time the BD-rate savings 
goes up significantly. Tests 4-7 show the BD-rate and complexity for 
the block sizes separately. A 4 × 4 block size contributes only 0.05% 
BD-rate savings and exceeds the execution time by 3%, which was the 
reason it was deactivated in our Min-Exe setup. On the other end, a 
32 × 32 block size performs well in terms of BD-rate savings, but the 
execution time is too high, which is the reason it was deactivated for 
the Min-Exe test setup. Tests 9-12 reveal the impact of various 
𝜆 settings on the BD-rate savings and encoder execution time. If LMA 
goes negative, the BD-rate savings are worse because distortion is 
emphasized over sparsity, but the proposed method follows the 
opposite configuration with SoD. If LMA goes positive, the results 
improve, and a +5% 𝜆 adjustment created the best results. Test 13 
shows the BD-rate savings results of the QPD part, which performs 
very well and improves the BD-rate by around 2.1%. Test 14 shows 
the impact of the chroma part. Tests 15-19 show the impact of the 
HEVC-SCC tools on the BD-rate savings and execution time. 
Interestingly, in the “All tools off” setup (screen content tools off), the 
BD-rate savings is more than double compared to the “All tools on” 
setup test 3. This shows that the internal screen content tools of HEVC-
SCC perform well in removing a lot of content that would otherwise 
be a candidate for our proposed method.  

D. Crop Compare 

The visual quality is not an issue and tends to be in 
general, consistent with the PSNR values.  

 

 
Fig. 11. ChinaSpeed original yuv test sequence 1024x768 𝑄𝑃{ }, 
AllIntra, screenshot 

 
Fig. 12. ChinaSpeed original yuv test sequence 1024x768 QP{ }, 
AllIntra, snapshot enlargement 
 

 
Fig. 13. HEVC proposed method blocks for ChinaSpeed test sequence 
1024 × 768, QP{ }, AllIntra, snapshot enlargement 
 
By comparing Fig. 12 which is an enlarged snapshot of Fig. 11 With 
Fig. 13 it is not easy to detect any PSNR degradation at all. 
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Table VIII 

HEVC BD-rate and execution time Comparison 

 
Table VIII lists the BD-rate and execution time for related sparse video 
compression research for comparison with Table IV. For execution 
time, 100% means that the execution time is the same as the reference 
run without the proposed method. Overall, there are around 11, more 
or less, sparse coding papers, but only three papers [5, 13, 14] compare 
with HEVC and only ours [20] compares with HEVC-SCC. The rest 
of the past research used H.264 to H.263 and other codecs. Paper [5] 
uses sparse coding and DCT in a sequence. They tested B, C, and D, 
but the method is too different to be listed for an unbiased comparison 
in Table VIII. In general, paper [13] tested only a small subset of the 
CTC [11] (classes C and D), but this research tested all the CTC [11] 
test sequences, so it was possible to adapt the test results from Table 
IV to the test setup of paper [13] for an unbiased comparison. Also 
different is the block size of 8 × 8 to   
32 × 32 and our block sizes includes everything from 4 × 4 to  
32 × 32, but as mentioned before, the contribution of the 4 × 4 block 
size for the proposed method is very low, so that the difference to [13] 
can be ignored. Paper [14] on the other hand, follows like our research, 
strictly with the CTC [11]. The only difference between the results 
between [13], [14] and this research are the number of frames tested. 
[13] tested all frames, [14] tested only first 11 frames, and our research 
takes the first 20% of the frames for training and uses the remaining 
unseen 80% frames for the test. Execution time comparison is a general 
problem, some research did not mention it, like [14, 17, 19], and [22], 
or mention it in an unusual way like [15] as “Complexity (pel/s)” and 
“Runtime (s/frame)” or in [16] with millions of operations per frame, 
which goes from a ratio of 3.94 to 7.40. We consider [13] as an 
efficient implementation of sparse coding, it has a 43% increase of 
execution time. With more research into optimization techniques like 
vectorization, plus using the latest and most efficient sparse coding 
solution, and not using a generic OMP MATLAB translation into C++, 
plus a more optimized residual classifier (RClass), and additionally, if 
the 16x16 and 32x32 blocks are all split up in 8x8 blocks to reduce the 
exponential increase of execution time for 16x16 and 32x32 blocks, 
the complexity increase should be around the same level or even lower. 
The  BD-rate test results are promising, compared to [13] we improved 
the BD-rate by 1.9%, but our execution time was almost 35 times 
slower. For [14] we improved it for RA by 1.5%, for LDB by 3.8%, 
and for LDP by 1.3%. The execution time for this case, could not be 
compared because [14] did not mention it. A surprising issue with the 
comparison of this work with others is also that sparse coding in video 
compression is in many cases were done only for the inter part. To 
compare our results with intra compression it is needed to compare it 
with sparse coding for image compression which is in principle intra. 
But, on the other hand, it would be a biased comparison because of the 
missing CABAC compression option, so we skip it here. 

 
 

Table IX 
All Intra, RandomAccess, LowDelayB and LowDelayP 

 

E. HEVC & HEVC-SCC: ChinaSpeed test sequence and 
proposed method comparison 

HEVC is tested by CTC [11], and HEVC-SCC is tested by the CTC 
[12]. Both CTC [11, 12] test-sequence selection are different except 
for two, which are for HEVC-SCC and also for HEVC (ClassF 
optional) ChinaSpeed and SlideShow. 
 

Table X 
Comparison of common test sequences ChinaSpeed and SlideShow 

between HEVC and HEVC-SCC 

Test sequence BD-Rate HEVC BD-Rate HEVC-SCC 
ChinaSpeed -10.5% -9.4% 
SlideShow -0.7% -0.9% 

 
Table X shows the differences in BD-rate savings between the two test 
sequences that are common to both CTC [11, 12]. An interesting 
example is the ChinaSpeed test sequence for comparing the decoded 
YUV output between HEVC and HEVC-SCC. This comparison 

Paper/year Block size Test Setup Test Classes BD-rate Execution Time 
[13] 2016 “Orthogonal-
Matching-Pursuit 
Based Residual Coding 
with Content Adaptive 
Dictionary in HEVC” 

8 × 8  
to 

32 × 32 
LDP 

C 
BasketballDrill 480p 

RaceHorses 480p 
 

D  
BlowingBubbles 240p 

BQSquare 240p 
RaceHorses 240p 

-2.3% 143% 

This paper 
(Approximation) 

4 × 4  
to 

32 × 32 
-4.2% 3,613% 

[14] 2016 “OMP-based 
transform for inter 
coding in HEVC” 4 × 4  

to 
32 × 32 

RA A, B, C, D, F -1.0% 
Not Available LDB 

B, C, D, E, F 
-0.8% 

LDP -3.3% 

This paper (Table IV) 
RA A, B, C, D, F -2.5% 1,836% 

LDB B, C, D, E, F -4.6% 1,805% 
LDP B, C, D, E, F -4.6% 2,696% 

Test Scenario Details 
AllIntra (AI) - Each picture is an I picture 

- Good for low delay 
- Higher bit rate applications 
- QP is constant 

RandomAccess (RA) 
-Streaming 
-Broadcast 
-Blue-ray 
-DVD 

-Hierarchical B structure is used 
-Coding efficiency is highest 
-Larger delay (reordering) 
-For errors control,  
- Every second an I pic 

LowDelayB (LDB) 
-Medium comp. 
-Video Conference 
 

-First pic is an I pic 
-All others are encoded as P pics 
-Reordering of pics not allowed 
-only past pics prediction 
-Low coding delay 

LowDelayP  (LDP) 
-HEVC only 
-Medium comp. 
-Video Conferencing 

-First pic is an I pic 
-All others are encoded as B pics. 
-Reordering of pics not allowed 
-Low coding delay 
-Higher coding efficiency as LDP 
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reveals in general where the proposed method compresses well, which 
part is not compressed, and whether or not there is a significant 
difference between the two codecs. ChinaSpeed is overall very well 
compressed by the proposed method, for both codec HEVC by -10.5% 
and HEVC-SCC by -9.4%. 
 

 
Fig. 14. HEVC proposed method blocks for ChinaSpeed test sequence 
1024x768, 𝑄𝑃{ }, AI.  

Fig. 14 shows the ChinaSpeed test sequence, handled by the HEVC 
codec, without screen content coding tools. As it can be seen, almost 
all Chinese characters are not encoded by the proposed method. 

 
Fig. 15. HEVC-SCC proposed method blocks for ChinaSpeed test 
sequence 1024x768, 𝑄𝑃{ }, AI.  

Fig. 15 shows the same ChinaSpeed test sequence like Fig. 14 but with 
the HEVC-SCC codec compression. As expected, despite the fact that 
two different sets of dictionaries were used, the outcome is similar. The 
BD-Rate savings for both are close, with a difference of 1.1%. The 
compression of HEVC-SCC is less because the HEVC-SCC tools 
already compress a significant amount of screen content blocks on 
their own, and these are subsequently not compressed by the proposed 
method. In general, for the ChinaSpeed test sequence for both codecs, 
the proposed method is used more in some areas of the picture. Overall, 
the proposed method is used for simple planar blocks, and blocks with 
straight lines in any angles, but not for simple, single-color blocks with 
no change at all. 

F. HEVC & HEVC-SCC: SlideShow test sequence and 
proposed method comparison  

SlideShow is the other test sequence that both test conditions share 
and exists on the other end of the spectrum that is poorly compressed 
by the proposed method. 
 

 
Fig. 16. HEVC proposed method blocks for SlideShow test sequence 
1280x720, QP{ }, AI.  
 
Fig. 16 shows the SlideShow test sequence, where the proposed 
encoded blocks are highlighted with black boxes. In comparison to 
ChinaSpeed, it is obvious that SlideShow does not perform well with 
the proposed method. A major reason is that SlideShow contains 
numerous white color background blocks, which are efficiently 
compressed by DCT + DZQ + CABAC. In these cases, the proposed 
method cannot compete against the standard process.  
 

 
Fig. 17. HEVC-SCC proposed method blocks for SlideShow test 
sequence 1280x720, QP{ }, AI.  
 
Fig. 17 shows the same picture/frame as shown in Fig. 16, but encoded 
with HEVC-SCC instead of HEVC. The two BD-rate savings are 
close: with HEVC at -0.7% and HEVC-SCC at -0.9%. The test setup 
between the two codecs was similar, and both used their own trained 
dictionary sets. The differences are that the proposed method for 
HEVC compresses more of the middle graphics, an area that is 
compressed less by HEVC-SCC. Additionally, the grass is more 
compressed in HEVC than in HEVC-SCC. 
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G. Dictionary visualization HEVC 
We visualized the dictionaries to show the common structures, to 

reveal any surprising patterns, to get an idea of the direction in which 
the whole training process goes, and to demonstrate what the general 
characteristic of a trained dictionary is—as well as to determine what 
the KSVD process considered important, and what it considered 
unimportant. 
 

 
Fig. 18. ClassA2 (4k) 8×8 QP{ } subset.  
 
Fig. 18 shows the ClassA2 (4k) dictionary subset. It features fluffy 
diagonal blocks, including horizontal blocks. This reflects that the 
training data process have a significant impact on the dictionary 
training process.  
 

 
Fig. 19. ClassD 32×32 𝑄𝑃{ } subset.  

Fig. 19 shows a dictionary subset, which contrasts with many other 
dictionaries because it looks almost like noise, waves, or shadows. 

H. Dictionary visualization HEVC-SCC 

 
Fig. 20. Visual dictionary TGM1080 8×8 𝑄𝑃{ } subset.  

Fig. 20 shows a typical subset of a TGM1080 dictionary, where the 
blocks themselves look more detailed. It also shows more lined 
dictionary atoms, in this case a majority are straight horizontal and 
vertical, and some are diagonal. 

 
Fig. 21. Visual dictionary MixedContent 16 × 16 𝑄𝑃{ } subset.  

Fig. 21 shows a dictionary, which is special because this subset 
features content parts from MissionControl2 test sequence, where the 
background is star-like, as can be seen in this dictionary subset. 
Overall, as expected, every category is developed in the training 
process, with characteristics adjusted to the content used for the 
process. 

VI. CONCLUSION 

We adapted, with encouraging results, a semi-extreme sparse coding 
solution to HEVC and HEVC-SCC for LMFE prediction residuals 
signals. The BD-rate savings for the HEVC intra setup can reach up to 
5.5%, with enough BD-rate savings depending on [33] to be 
considered for the standardization process, but the execution time is a 
problem. This BD-rate savings shows that the standard HEVC 
inter/intra prediction and transform coding process is not perfect and 
has flaws and limitations. A significant problem with using sparse 
coding is the increase in complexity. Our execution time needs to be 
taken with caution. As mentioned before based on paper [13] the 
execution time for the encoder can be around the same increase of 
43%, by following basic optimization techniques. The execution time 
for the decoder should be slightly better than for DCT because sparse 
coding uses only a linear combination to reconstruct the signal. 
Additionally, the overall average sparsity for HEVC and HEVC-SCC 
is around 1.5 atoms. On the other hand, DCT + DZQ are in principle 
matrix based, and have a higher complexity than a linear combination. 
The mentioned low overall average number of sparse coefficients 
means that most blocks are compressed by less than two sparse 
coefficients, which is close to the extreme sparse representation 
mentioned in [6], which would be the case, if only one sparse 
coefficient is used with a coefficient value of 1. We consider an 
average sparsity of less than two sparse coefficients as semi-extreme. 
The proposed category approach is only a temporary 
simulation/solution and a placeholder for an online learning approach, 
but it still demonstrates that there will be not a single universal 
dictionary that can handle all contents and applications. The reason is: 
to have a dictionary that is suitable for every content, it needs to be 
learned by every content, and if it is learned by every content, then it 
must be more generic and thus needs a significant amount of basic 
building blocks to include the large number of different details. 
Therefore, the sparse coding finding process requires on average more 
coefficients to construct a specific signal.   

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3268061

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Santa Clara University. Downloaded on June 24,2023 at 16:51:34 UTC from IEEE Xplore.  Restrictions apply. 



14 
 

REFERENCES 

[1] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive greedy 
approximations,” J. Construct. Approx., vol. 13, pp. 57–98, 1997. 

[2] S. G. Mallat and Zhifeng Zhang, "Matching pursuits with time-
frequency dictionaries," in IEEE Transactions on Signal 
Processing, vol. 41, no. 12, pp. 3397-3415, Dec. 1993, doi: 
10.1109/78.258082. 

[3] S. S. Chen, D. L. Donoho and M. A. Saunders, “Atomic 
Decomposition by Basis Pursuit”, Stanford, 1995, Technical 
Report-Statistics. 

[4] Y. C. Pati, R. Rezaiifar and P. S. Krishnaprasad, "Orthogonal 
matching pursuit: recursive function approximation with 
applications to wavelet decomposition," Proceedings of 27th 
Asilomar Conference on Signals, Systems and Computers, 1993, 
pp. 40-44 vol.1, doi: 10.1109/ACSSC.1993.342465.  

[5] J. Kang, M. Gabbouj and C. -. J. Kuo, "Sparse/DCT (S/DCT) 
Two-Layered Representation of Prediction Residuals for Video 
Coding," in IEEE Transactions on Image Processing, vol. 22, no. 
7, pp. 2711-2722, July 2013, doi: 10.1109/TIP.2013.2256917. 

[6] M. Aharon, M. Elad and A. Bruckstein, "K-SVD: An algorithm 
for designing overcomplete dictionaries for sparse 
representation," in IEEE Transactions on Signal Processing, vol. 
54, no. 11, pp. 4311-4322, Nov. 2006, doi: 
10.1109/TSP.2006.881199.  

[7] HEVC Reference Software HM-16.18 (2016 February)  
[Online]. Available: 
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM
-16.8/ 

[8] HEVC Reference Software HM-16.18+SCM-8.7 (2018 January) 
[Online]. Available: 
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM
-16.18+SCM-8.7 

[9] J. Xu, R. Joshi and R. A. Cohen, "Overview of the Emerging 
HEVC Screen Content Coding Extension," in IEEE Transactions 
on Circuits and Systems for Video Technology, vol. 26, no. 1, pp. 
50-62, Jan. 2016, doi: 10.1109/TCSVT.2015.2478706.  

[10] L. Limin and T. Alexis, “Rate distortion optimized quantization 
in the JM reference software.” JVT-AA027, 2008. 

[11] Karsten Suehring, “JVET common test conditions and software 
reference configurations”, JVET-B1010, 2016. 

[12] Haoping Yu, “Common test conditions for screen content 
coding”, JCTVC-Z1015, 2017. 

[13] Z. T. Zhang and C. Yeh, "Orthogonal-Matching-Pursuit Based 
Residual Coding with Content Adaptive Dictionary in HEVC," 
2016 International Computer Symposium (ICS), 2016, pp. 355-
358, doi: 10.1109/ICS.2016.0078. 

[14] R. Song, C. Lan, H. Li, J. Xu and F. Wu, "OMP-based transform 
for inter coding in HEVC," 2016 IEEE International Symposium 
on Circuits and Systems (ISCAS), 2016, pp. 798-801, doi: 
10.1109/ISCAS.2016.7527361. 

[15] Y. Xue and Y. Wang, "Video coding using a self-adaptive 
redundant dictionary consisting of spatial and temporal prediction 
candidates," 2014 IEEE International Conference on Multimedia 
and Expo (ICME), 2014, pp. 1-6, doi: 
10.1109/ICME.2014.6890314. 

[16] R. Neff and A. Zakhor, "Very low bit-rate video coding based on 
matching pursuits," in IEEE Transactions on Circuits and 
Systems for Video Technology, vol. 7, no. 1, pp. 158-171, Feb. 
1997, doi: 10.1109/76.554427. 

[17] R. Neff and A. Zakhor, "Matching pursuit video coding at very 
low bit rates," Proceedings DCC '95 Data Compression 
Conference, 1995, pp. 411-420, doi: 10.1109/DCC.1995.515531. 

[18] M. Vetterli and T. Kalker, "Matching pursuit for compression and 
application to motion compensated video coding," Proceedings of 
1st International Conference on Image Processing, 1994, pp. 725-
729 vol.1, doi: 10.1109/ICIP.1994.413410. 

[19] J. Kang, C. -. J. Kuo, R. Cohen and A. Vetro, "Efficient dictionary 
based video coding with reduced side information," 2011 IEEE 
International Symposium of Circuits and Systems (ISCAS), 2011, 
pp. 109-112, doi: 10.1109/ISCAS.2011.5937513. 

[20] M. G. Schimpf, N. Ling, Y. Shi and Y. Liu, "Sparse Coding of 
Intra Prediction Residuals for Screen Content Coding," 2021 
IEEE International Conference on Consumer Electronics (ICCE), 
2021, pp. 1-6, doi: 10.1109/ICCE50685.2021.9427722. 

[21] F. Bergeaud and S. Mallat, "Matching pursuit of images," 
Proceedings., International Conference on Image Processing, 
1995, pp. 53-56 vol.1, doi: 10.1109/ICIP.1995.529037. 

[22] O. K. Al-Shaykh, E. Miloslavsky, T. Nomura, R. Neff and A. 
Zakhor, "Video compression using matching pursuits," in IEEE 
Transactions on Circuits and Systems for Video Technology, vol. 
9, no. 1, pp. 123-143, Feb. 1999, doi: 10.1109/76.744280. 

[23] H. Xiong, Z. Pan, X. Ye and C. W. Chen, "Sparse Spatio-
Temporal Representation With Adaptive Regularized Dictionary 
Learning for Low Bit-Rate Video Coding," in IEEE Transactions 
on Circuits and Systems for Video Technology, vol. 23, no. 4, pp. 
710-728, April 2013, doi: 10.1109/TCSVT.2012.2221271. 

[24] J. Yang, J. Wright, T. S. Huang and Y. Ma, "Image Super-
Resolution Via Sparse Representation," in IEEE Transactions on 
Image Processing, vol. 19, no. 11, pp. 2861-2873, Nov. 2010, doi: 
10.1109/TIP.2010.2050625. 

[25] F. Zhou, W. Yang and Q. Liao, "Single image super-resolution 
using incoherent sub-dictionaries learning," in IEEE Transactions 
on Consumer Electronics, vol. 58, no. 3, pp. 891-897, August 
2012, doi: 10.1109/TCE.2012.6311333. 

[26] J. Sole, R. Joshi, W. -. Chien and M. Karczewicz, "Transform 
coefficient coding in HEVC," 2012 Picture Coding Symposium, 
2012, pp. 461-464, doi: 10.1109/PCS.2012.6213254. 

[27] M. Kalluri, M. Jiang, N. Ling, J. Zheng and P. Zhang, "Adaptive 
RD Optimal Sparse Coding With Quantization for Image 
Compression," in IEEE Transactions on Multimedia, vol. 21, no. 
1, pp. 39-50, Jan. 2019, doi: 10.1109/TMM.2018.2847228. 

[28] M. Viitanen, J. Sainio, A. Mercat, A. Lemmetti and J. Vanne, 
"From HEVC to VVC: The First Development Steps of a 
Practical Intra Video Encoder," in IEEE Transactions on 
Consumer Electronics, vol. 68, no. 2, pp. 139-148, May 2022, doi: 
10.1109/TCE.2022.3146016. 

[29] W. Hamidouche, F. Pescador, T. Biatek and E. François, 
"Editorial Real-Time Implementation of VVC Standard for 
Consumer Electronic Devices," in IEEE Transactions on 
Consumer Electronics, vol. 68, no. 2, pp. 93-95, May 2022, doi: 
10.1109/TCE.2022.3176714. 

[30] K. Choi, The Van Le, Y. Choi and J. Y. Lee, "Low-Complexity 
Intra Coding in Versatile Video Coding," in IEEE Transactions 
on Consumer Electronics, vol. 68, no. 2, pp. 119-126, May 2022, 
doi: 10.1109/TCE.2022.3145397. 

[31] I. Farhat, W. Hamidouche, A. Grill, D. Ménard and O. Déforges, 
"Lightweight Hardware Transform Design for the Versatile 
Video Coding 4K ASIC Decoders," in IEEE Transactions on 
Consumer Electronics, vol. 67, no. 4, pp. 329-340, Nov. 2021, 
doi: 10.1109/TCE.2021.3126549. 

[32] G. Bjøntegaard, Calculation of Average PSNR Differences 
Between RD-Curves, document VCEG-M33, ITU-T SG 16/Q6, 
13th VCEG Meeting, Austin, TX, USA, Apr. 2001 

[33] Nam Ling, C.-C. Jay Kuo, Gary J. Sullivan, Dong Xu, Shan Liu, 
Hsueh-Ming Hang, Wen-Hsiao Peng, and Jiaying Liu, “The 
Future of Video Coding,” APSIPA Transactions on Signal and 
Information Processing, Vol. 11, Issue 1, pp. 1-29, Jun 2022. 

 
  

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3268061

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Santa Clara University. Downloaded on June 24,2023 at 16:51:34 UTC from IEEE Xplore.  Restrictions apply. 



15 
 

Michael G. Schimpf (S’14) received 
the B.Sc. degree in information 
technology with his bachelor thesis: 
“Development of a server component 
for multimedia and safe Internet 
payment at Questico AG“ from Beuth 
University of Applied Sciences 
Berlin, Berlin, Germany, in 2002, and 
the M.A. degree in data- and 

information-management with his master thesis: “Developing a 
Java EE5 [Platform] – Transformation Components for the 
Purpose of Exchanging/Interchanging Business Process 
Models based on Inter-Media Format EPMAL on the Example 
of Microsoft Visio” from the University of Hamburg, Hamburg, 
Germany, in 2006. From 2002 to 2006 he worked as Software 
Developer for the Mecom GmbH, Hamburg, Germany. From 
2006 to 2012 he worked as Senior IT consultant for multiple 
customers as Software Developer, Business Analyst, 
Application Manager and Technical Project Manager for the 
Prodyna AG, Frankfurt, Germany. He moved from Germany to 
Santa Clara to begin his PhD degree at Santa Clara University 
with the Department of Computer Science and Engineering, 
Santa Clara University. Michael is working as a peer advisor 
and teaching assistant for various courses for Santa Clara 
University, Santa Clara, CA, USA. He is IEEE student member 
since 2014. Author of the conference paper "Sparse Coding of 
Intra Prediction Residuals for Screen Content Coding," 2021 
IEEE International Conference on Consumer Electronics 
(ICCE), Las Vegas, NV, USA, 2021. And coauthor of the 
patent: “System and Method for Coding Intra Prediction Mode 
using a Second Set of Most Probable Modes”. His research 
interest is video compression, screen content, machine learning, 
spare coding. 
 

Ying Liu (S’11-M’13) received the B.S. 
degree in communications engineering 
from Beijing University of Posts and 
Telecommunications, Beijing, China, in 
2006, the M.S. and Ph.D. degrees in 
Electrical Engineering from The State 
University of New York at Buffalo, NY, 
USA, in 2008 and 2012, respectively. 
She is currently an Assistant Professor in 
the Department of Computer Science 
and Engineering at Santa Clara 

University, Santa Clara, CA, USA. She serves as an Associate 
Editor for the IEEE Transactions on Circuits and Systems for 
Video Technology. Her main research interests are in image 
and video processing, deep learning, and computer vision. 
 
 
 
 
 
 

Nam Ling (S’88-M’90-SM’99-F’08-
LF'22) received the B.Eng. degree 
from the National University of 
Singapore, Singapore, in 1981, and 
the M.S. and Ph.D. degrees from the 
University of Louisiana at Lafayette, 
Lafayette, LA, USA, in 1985 and 
1989, respectively. From 2002 to 
2010, he was an Associate Dean with 
the School of Engineering, Santa 
Clara University, Santa Clara, CA, 

USA. He was the Sanfilippo Family Chair Professor, and is 
currently the Wilmot J. Nicholson Family Chair Professor and 
the Chair with the Department of Computer Science and 
Engineering, Santa Clara University. He is/was also a 
Consulting Professor with the National University of 
Singapore, a Guest Professor with Tianjin University, Tianjin, 
China, a Guest Professor with Shanghai Jiao Tong University, 
Shanghai, China, a Cuiying Chair Professor with Lanzhou 
University, Lanzhou, China, a Chair Professor and Minjiang 
Scholar with Fuzhou University, Fuzhou, China, and a 
Distinguished Professor with the Xi’an University of Posts and 
Telecommunications, Xi’an, China. He has authored or 
coauthored over 250 publications and seven adopted standard 
contributions. He has been granted 20 U.S. patents so far. He is 
an IEEE Fellow due to his contributions to video coding 
algorithms and architectures. He is also an IET Fellow. He was 
named as an IEEE Distinguished Lecturer twice and also an 
APSIPA Distinguished Lecturer. He was a recipient of the 
IEEE ICCE Best Paper Award (First Place) and the Umedia 
Best/Excellent Paper Award three times. He received six 
awards from Santa Clara University, four at the University level 
(Outstanding Achievement, Recent Achievement in 
Scholarship, President’s Recognition, and Sustained 
Excellence in Scholarship), and two at the School/College level 
(Researcher of the Year and Teaching Excellence). He was a 
Keynote Speaker for IEEE APCCAS, VCVP (twice), JCPC, 
IEEE ICAST, IEEE ICIEA, IET FC Umedia, IEEE Umedia, 
IEEE ICCIT, ICNLP/SSPS/CVPS, and Workshop at XUPT 
(twice). He has served as a General Chair/CoChair for IEEE 
Hot Chips, VCVP (twice), IEEE ICME, Umedia (seven times), 
IEEE SiPS, and IEEE VCIP. He was an Honorary Co-Chair for 
IEEE Umedia 2017. He has also served as a Technical Program 
Co-Chair for IEEE ISCAS (twice), APSIPA ASC, IEEE 
APCCAS, IEEE SiPS (twice), DCV, and IEEE VCIP. He was 
a Technical Committee Chair for IEEE CASCOM TC and IEEE 
TCMM, and is currently the Chair of the APSIPA U.S. Chapter. 
He has served as a Guest Editor or an Associate Editor for the 
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS — 
I: REGULAR PAPERS, the IEEE JOURNAL OF SELECTED 
TOPICS IN SIGNAL PROCESSING, Springer JSPS, and 
Springer MSSP. He has delivered more than 120 invited 
colloquia worldwide and has served as Visiting 
Professor/Consultant/Scientist for many institutions/ comp- 
anies. 

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3268061

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Santa Clara University. Downloaded on June 24,2023 at 16:51:34 UTC from IEEE Xplore.  Restrictions apply. 


