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Abstract— Effective image coding techniques are crucial for 

digital image storage and transmission. Traditional methods 

struggle to maintain high visual quality at low bitrates. In this 

paper, we present MobileViT-GAN, a novel generative adversarial 

network (GAN) architecture for low bitrate image compression. 

We propose a lightweight transformer-based discriminator to 

improve coding performance, compared to convolutional neural 

network-based discriminators. Additionally, we introduce a 

smoothness loss function to mitigate artifacts in decoded images, 

further improving visual quality in low bitrate image coding. We 

evaluate our proposed method against traditional and state-of-the-

art GAN-based image compression techniques, showcasing its 

superiority in terms of compression ratio and decoded image 

quality. 

Keywords— end-to-end compression, generative adversarial 

network, image coding, transformer, vision transformer 

I. INTRODUCTION  

Efficient image storage and transmission require effective 
compression techniques, especially in low bitrate scenarios such 
as video surveillance or bandwidth-limited applications. 
Traditional methods like JPEG [1], JPEG 2000 [2], and BPG [3] 
struggle to maintain visual quality at very low bitrates, whereas 
deep learning-based methods [4], [5], particularly generative 
adversarial networks (GANs) [6], exhibit improved 
performance in image compression tasks. Owing to GAN’s 
ability to generate photorealistic images, employing a generator 
as encoder-decoder for low bitrate image compression results in 
better perceptual quality [7]. GAN-based approaches excel in 
this task as adaptive image representations allow the generator 
to create realistic images while the discriminator differentiates 
between original and generated images. Existing GAN-based 
image compression methods adopt convolutional neural 
network-based discriminators, which are good at learning local 
features. In recent years, the vision transformer (ViT) [9] has 
emerged and shown capability of learning global features for 
computer vision tasks. Therefore, it has the potential to enhance 
discriminators in GAN-based image compression frameworks.   

In this paper, we propose MobileViT-GAN, a novel GAN-
based low bitrate image coding method that incorporates a 
lightweight transformer MobileViT [8] as the discriminator [6]. 
Besides, we propose a smoothness loss function to mitigate 
artifacts in decoded images. 

 

II. BACKGROUND 

A. GAN-based Image Compression Methods 

Generative adversarial networks (GANs) [10] consist of a 
generator and a discriminator, engaging in adversarial training 
to learn rich image representations for image processing tasks. 
Several studies have explored GAN-based compression 
techniques. In [6], a least squares generative adversarial network 

(LS-GAN) was proposed, minimizing perceptual artifacts while 
maintaining low bitrates. HiFiC [11] used a conditional GAN 
for image compression, improving image reconstruction quality. 
A hinge GAN-GP and a simple entropy estimator were 
introduced in [12], achieving remarkable visual quality at low 
bitrates. These methods utilized convolutional neural networks 
(CNNs) in the discriminator, but CNNs’ local receptive field 
makes it challenging to extract global features from images. 

B. Vision Transformer and MobileViT 

Transformers [13] demonstrate significant potential in 
computer vision tasks, with ViT [9] achieving top performance 
on various benchmarks. However, ViT’s computational cost and 
memory requirements can be prohibitive for resource-
constrained devices, particularly for high-resolution images. 
Reduced-size ViT models may perform worse than lightweight 
CNNs when tailored for mobile devices. 
 MobileViT [8] is a lightweight variant of ViT, using inverted 
bottleneck blocks [14] to minimize computational complexity 
while maintaining performance. With self-attention for compact 
global representation, MobileViT outperforms other efficient 
architectures like MobileNetV3 [15] and EfficientNet [16] in 
image classification and semantic segmentation. Therefore, we 
adopt MobileViT as the discriminator in our GAN-based image 
compression architecture, improving the coding performance 
for low bitrate image compression, while reducing the 
computational cost in the training stage. 

III. PROPOSED APPROACH 

Fig. 1 displays our proposed MobileViT-GAN architecture 
for low bitrate image compression, consisting of a generator for 
encoding/decoding images and a MobileViT-based 
discriminator to efficiently discern real (original �) and fake 

(decoded ��) images. The discriminator provides feedback to the 
generator, refining its encoding and decoding processes for 
higher-quality image reconstruction. Additionally, we introduce 
a smoothness loss function when we train the generator to 
reduce artifacts in decoded images. 

A. The MobileViT-Based Discriminator 

Fig. 1 bottom section shows our proposed discriminator: 
MobileViT. It has two key components: The MobileViT module 
and the Inverted Residual Block (InvRB). 

Fig. 2 depicts the MobileViT module, which consists of the 
following steps: 
1. Input tensor (�): Represents the input feature map as � ∈ℝ�×�×	  with height H, width W, and channels C. 
2. 3 × 3 convolutional layer: Captures local spatial 

information from �. 

3. 1 × 1 convolutional layer: Projects �  into a higher 
dimensional space �� > �� to create �� ∈ ℝ�×�×�

. 

4. Unfolding ��: Transforms �� into non-overlapping 
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flattened patches �� ∈ ℝ�×�×�, where � �  �ℎ and � � �� �/�  is the number of patches. Here, w and h 
represent the width and height of the non-overlapping 
patches, respectively. 

 

 

Fig. 1. MobileViT-GAN architecture. The top section depicts 
the generator (encoder-decoder) and entropy estimator, while 
the bottom section shows the discriminator: MobileViT. 
“ k3 n�$ % 2 ” denotes a convolution layer with a 3 × 3 
kernel, �$ output channels, and a stride of 2; �$ takes values 
of 120, 240, 480, and 960 for four convolutional layers. 
“T k3 n�( % 2” represents a transposed convolution layer 
with �( output channels, where �(  is 480, 240, 120, and 60 
for the four respective layers. “↓2” in the Inverted Residue 
Block (InvRB) indicates spatial down-sampling by a factor of 
2.  

 

Fig. 2. MobileViT module architecture: output tensor shapes 
are presented above each respective block. 

5. Transformer layer: Encodes inter-patch relationships,  
yielding �) ∈ ℝ�×�×�

. 
6. Folding �) : Recovers �*  ∈ ℝ�×�×�

 from �) . 
7. 1x1 convolutional layer: Projects �*  back into a lower � % 

dimensional space. 
8. Concatenation: Combines �*  with the input tensor �. 
9. 3 × 3  convolutional layer: Fuses concatenated features to 

generate the output tensor. 
 

 The skip connection in the MobileViT module, which 
combines CNNs and transformers, effectively captures local 

spatial information with convolutional layers and encodes global 
inter-patch relationships using the transformer layer. 

    The Inverted Residual Block is shown in Fig. 3. It employs a 
depthwise separable convolution layer with a stride of either 1 
or 2. This layer extracts essential features separately across input 

 

Fig. 3. Inverted Residue Block module architecture. 

channels from the local receptive field of the tensor �� , 
producing the output tensor �*, which significantly reduces the 
computational complexity from +(�,-. ×  ,-. × �/0 × �,-. ×12 × 13� to +��,-. ×  ,-. × �/0 × 12 × 13�, compared to a 
standard convolutional layer, where �,-.  and  ,-.  are height 
and width of the output feature map, �/0  and �,-.  are the 
number of input and output channels, and 12  and 13  are the 
kernel height and width. A residue connection is used to check 
if the dimensions of �*   and ��  match. If not, the residual 
connection is skipped, and ��  becomes the output tensor. 
Otherwise, the tensors �� and �* are added to form the output 
tensor.   
 For the MobileViT discriminator, we use the Swish 
activation function [17], which can lead to faster convergence 
during training and is defined as:  Swish�9′� � 9′ ⋅ σ�=9′�, (1) 

where 9′ is the input feature, = is a trainable parameter, and > is 
the standard sigmoid function.  

B. Smoothness Loss for Low Bitrate Image Coding 

 To remove artifacts in decoded images, we introduce a 
gradient loss in the training loss when we train the generator. 
This helps to improve spatial smoothness and perceptual quality 
in decoded images. The gradient loss is defined as: ?smooth � (�C×�C ∑ E��F,H % ��FIJ,HIJEKF,H , (2) 

where �L  and  L are the height and width of the input image, M 

and N  represent the spatial coordinates of a pixel within a 

decoded image, and δ represents the horizontal and vertical 

offsets between the compared pixels. We set δ to 1, comparing 

each pixel intensity with its immediate neighbor in both 

horizontal and vertical directions. 

C. Quantization and Entropy Coding 

We utilize the soft-to-hard quantization from [18] to map 

each encoder’s output feature element, P/FH , with the ith channel 

and (j, k) spatial coordinates to its corresponding integer 

quantization center within the finite set Q � R%2, %1, 0, 1, 2T, 

obtaining the quantized feature P�/FH . Due to the non-

differentiability of the nearest neighbor method, we apply 

differentiable soft quantization to enable backpropagation 

within the neural network: P/FH � U expY%σZP/FH % [\Z]∑ expY%σZP/FH % [2Z]^_∈`^a∈` [\ . (3) 
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Here, σ  is the sigmoid function. Throughout the training 

process, the quantized feature is obtained using: Pc/FH � stop_gradient YP�/FH % P/FH] + P/FH 

The stop gradient function ensures that only the gradient of P/FH  

is propagated for updating network parameters during the 

backward pass, while the gradient of YP�/FH % P/FH]  is not 

propagated.  

      To optimize the entropy of quantized features, we use the 

entropy estimator from [12], assuming the encoder’s final layer 

output,  PjFH, follows a normal distribution k�=/ , l/K�, where l/  and =/  are learnable per-channel offsets in the channel 

normalization. The estimated entropy of each quantized feature 

element P�/FH  is obtained by calculating the expected value of 

the negative logarithm of the probability density function:  ?mnopqrs  � t [%logK wYP�/FH]] �  

y t z%logKΦYP�/FH + 0.5]},   P�/FH � %2,                                t z%logK~1 % ΦYP�/FH % 0.5]�}, P�/FH � 2,                     �4�t z%logK~ΦYP�/FH + 0.5] % ΦYP�/FH % 0.5]�}, otherwise. 
In this equation, Φ�⋅� is the cumulative distribution function 

(CDF) of the standard normal distribution. 

 

D. Our Loss Functions 

      We train the discriminator and generator by adopting the 
Hinge GAN-GP [12] strategy for efficient training.   
       For the discriminator, we use equation (5) proposed by [12]: min�  t ~maxY0,1 % �����]� +t [max�0, 1 + ��Y��])]    (5) 

+ λ(t �Y||∇�c��Y�c]||K % 1]K� ,   

where � is the original image, �� is the decoded image,  �c is the 

interpolation between the real image � and the decoded image �� ,  �(  is the gradient penalty weight. In (5), ���∙�  is the 

discriminator. While ����� is anticipated to approach 1, ��Y��] 

is expected to approach %1 . We only penalize errors when ����� < 1  or ��Y��] > %1 , avoiding penalties for correct 

classifications, which makes the discriminator training more 

effective.  
For the generator, we use:  min) ?�oqo�� � min) Y?� + λK?�qnomno + λ�?mnopqrs  +   λ�?smooth], (6) 

where  ?�  �  t[%��Y��]]  is the adversarial loss,  ?�qnomno �t[�1 % α�MAE Y��, �] % αMS-SSIMY��, �]] is the content loss,  

combining the mean absolution error (MAE) and the multi-scale 
structural similarity (MS-SSIM) between the original image � 

and the decoded image �� [12].  Besides, ?mnopqrs is the entropy 

loss provided in (4), and  ?smooth is defined in (2).  

IV. EXPERIMENTAL RESULTS 

We trained GAN models on 235,679 distinct 256 × 256 
image patches, obtained from 118,287 images in the COCO 
dataset [19], using the Adam optimizer [20] with a 0.0001 
learning rate, a batch size of 24, and 40 epochs. To evaluate 
these models’ performance, we tested them against all 24 images 
of 512 × 768 resolution from the Kodak dataset [21], which is 

commonly used to evaluate BPG [3] and learned image 
compression models [4, 5, 6, 11, 12]. 

      Since our focus was on perceptual quality, we employed the 
Fréchet Inception Distance (FID) score [22] and the MS-SSIM 
as evaluation metrics for the decoded images. The FID score is 
determined by computing the mean and covariance matrix of the 
features extracted from a pretrained Inception network for both 
the original and decoded images. A lower FID score indicates 
that the distribution of the decoded images is more similar to the 
distribution of the original images. 

       For the GAN models, we configured the compressed feature 

dimensionality to be  16 × 16 × 16  for height, width, and channel number, respectively. In our proposed model, we set 

the hyper-parameters in the discriminator loss function (5) and 

the generator loss function (6) as  λ( � 10, λK � 100 , λ� � 1, λ� � 5, and α�0.84. These settings resulted in good visual 

quality for decoded images, while maintaining a low bitrate.  
      Fig. 5 displays visual qualities of decoded test images for 

BPG, LS-GAN, HiFiC, Hinge GAN-GP, and our proposed 

MobileViT-GAN. Our model provides the best visual quality, 

preserving more texture details, compared to other models. LS-

GAN poorly reconstructs textures of hats and struggles with 

coastal areas, and its decoded images exhibit unfaithful colors. 

BPG’s decoded images show block artifacts in cloud and coastal 

regions, affecting visual quality. HiFiC’s decoded images are 

less sharp in cap and coastal areas compared to our model. Hinge 

GAN-GP fails to accurately reconstruct the railing area in the 

second decoded image. 

      Table 1 shows the average bits per pixel (bpp), FID, and MS-

SSIM scores for all methods in Fig. 5, using 24 Kodak test 

images. Our proposed MobileViT-GAN attains the best bpp, 

MS-SSIM, and FID scores. Furthermore, our model saves 6.2%, 

30.54%, 40.01%, 2.09% in bitrates compared to BPG, LS-GAN, 

HiFiC, and Hinge GAN-GP, respectively, and reducing bitrates 

for these models would result in FID and MS-SSIM scores that 

are even worse compared to our proposed MobileViT-GAN.       We conducted an ablation study to demonstrate the 

effectiveness of our proposed components: the MobileViT 

discriminator and the smoothness loss function. Fig. 6 displays 

the result, which is an enlarged patch of a Kodak image decoded 

by our generator under three scenarios at approximately 0.090 

bpp: without a discriminator, without the smoothness loss, and 

with both the discriminator and smoothness loss. The decoded 

image generated by the model that includes both the 

discriminator and smoothness loss exhibits clearer texture and 

appears more realistic compared to the other two scenarios, 

which indicates the effectiveness of our proposed discriminator 

and smoothness loss function.  

      We also compare the number of parameters and the floating-

point operations (FLOPs) for a single image patch of the 

proposed MobileViT discriminator with the CNN-based 

discriminators in other GAN-based image compression models. 

The MobileViT discriminator has 1,301,249 parameters and 

0.63 giga FLOPs, while the discriminator of LS-GAN has 

2,766,529 parameters and 4.37 giga FLOPs. Similarly, the 

discriminator of HiFiC has 2,777,985 parameters and 3.73 giga 
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FLOPs, and the discriminator of Hinge GAN-GP has 3,049,857 

parameters and 6.67 giga FLOPs. We observe that MobileViT 

is the most lightweight discriminator, but it still helps our GAN-

based image compression model achieve the best quality of 

decoded images compared to the other three GAN-based 

methods. This demonstrates that transformer structures help to 

build a more effective discriminator compared to CNN 

structures. Additionally, the lightweight discriminator also helps 

to save training costs. It is important to mention that all GAN 

models have very close parameter numbers and FLOPs for their 

generators: MobileViT-GAN has 160,672,403 parameters and 

96.08 giga FLOPs for the generator; LS-GAN has 160,672,371 

parameters and 95.97 giga FLOPs for the generator; HiFiC has 

160,603,239 parameters and 96.08 giga FLOPs for the 

generator; Hinge GAN-GP has 160,672,403 parameters and 

96.08 giga FLOPs for the generator. The closely matched  

parameters and FLOPs for the generators of these GAN models 

indicate the fairness of comparison, and also demonstrate that 

our proposed MobileViT discriminator is effective in improving 

the performance of our generator. 

V. CONCLUSION         We propose MobileViT-GAN, a generative adversarial 

network for low bitrate image coding, with a lightweight 

transformer-based discriminator and a smoothness loss function. 

Our model delivers superior visual quality while maintaining a 

highly efficient discriminator with fewer parameters and lower 

computational complexity in terms of FLOPs, compared to 

existing GAN-based image compression models. Future work 

will focus on developing efficient transformer structures for the 

generator. We also consider applying MobileViT-GAN to image 

compressed sensing [23]. 

(A) (B) 

    
(C) (D) 

    
(E) (F) 

    
Fig. 5.  Sample images of Kodak dataset [21]. (A) Original; (B) BPG [3]; (C) LS-GAN [6]; (D) HiFiC [11]; (E) Hinge GAN-GP 

[12]; (F) The Proposed MobileViT-GAN.   

 

Table 1. Comparison of given approaches on 24 Kodak images [20]. The best value of each metric is marked in red.  

 BPG LS-GAN HiFiC Hinge GAN-GP MobileViT-GAN 

Average bpp 0.0948 0.1280 0.1501 0.0908 0.0889 

Average MS-SSIM 0.8932 0.8401 0.8802 0.8998 0.9012 

FID 107.40 98.07 55.27 67.44 53.14 

    
 

Fig. 6. An enlarged patch of the kodim21 image from the Kodak dataset [21], reconstructed by our MobileViT-GAN’s 

generator. Left to right: original; w/o discriminator; w/o smoothness loss; with discriminator and smoothness loss. 
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